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1. Introduction 

By far, the most complicated case in target tracking is to track multiple maneuvering 

targets in heavy clutter. Numerous methods and algorithms have been devoted to this 

problem and for any one of them pros and cons can be pointed out. Theoretically, for 

example, the MHT method is known to be the most powerful approach to tracking 

multiple maneuvering targets in clutter. This method, however, very often leads to 

combinatorial explosion and computational overload that restricts its implementation. 

Recently, numerous papers have been devoted to algorithms capable to compute a 

ranked set of assignments of measurements to targets. Such algorithms allowed for 

the first practical implementations of MHT the approach. 

Another and much less complicated approach, especially for tracking maneuvering 

targets, is the Multiple Models (MM) approach. The most promising algorithm based 

on this approach is the Interacting Multiple Models (IMM) algorithm. At the price of 

some sub-optimality of its framework, this algorithm reaches best implementation in 

terms of speed and stability. However, in the presence of clutter the IMM algorithm 

most often fails. In the case of cluttered environment, the PDA (and JPDA) 

approaches can be implemented. When tracking multiple closely spaced targets, the 

JPDA algorithm can be implemented successfully even in the presence of heavy 

clutter. In a recent paper 
1
 we proposed an algorithm unifying features of the IMM 

and the JPDA algorithms. That algorithm proved to be good alternative to the MHT 

approach for clusters containing up to 4 targets and moderate level of clutter. 

However, when the number of targets in the cluster exceeds this limit the total 

number of all feasible hypotheses increases exponentially. In this paper we propose 

an extension of the algorithm in our previous work. 
1
 Instead of enumeration of all 
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feasible hypotheses we propose to use ranked assignment approach to find the first K-

best hypotheses only. The value of K has to ensure that the weight of scores-sum of 

these K-best hypotheses prevails over the total sum.  

This paper is organized as follows. In the next section we elaborate on our motivation 

and formulate the problem. The IMM_JPDA algorithm is briefly described and the 

need of its extension is discussed. In the 3
rd

 section the extended algorithm is 

described. The emphasis is on the extension of the algorithm. The 4
th

 section presents 

simulation results. These results show that the extended algorithm performs better 

than the IMM_JPDA algorithm in terms of speed, while at the same time preserves 

stability of tracking. 

2. Motivation and Problem Formulation 

When several closely spaced targets form a cluster, the JPDA algorithm starts to 

generate all feasible hypotheses and to compute their scores. The set of all feasible 

hypotheses includes such hypotheses as „null‟ hypothesis and all its derivatives. The 

consideration of all possible assignments including the „null‟ assignments is important 

for optimal calculation of assignment probabilities.
6
 If, for example, the score of 

every one of these hypotheses differs from any of the others by no more than one 

order of magnitude, it should not be possible to truncate some significant parts of all 

hypotheses. If, however, the prevailing share of the total score is concentrated in a 

small percent of the total number of all hypotheses, then the interest in considering 

only this small percent of all hypotheses becomes very high. 

In order to investigate this idea, a typical example with five closely spaced targets 

with overlapping validation regions and shared measurements is used. In the first run 

(or first scenario) 17 measurements are disposed in the target gates, and in the second 

run (second scenario) 9 measurements are disposed. At every run all feasible 

hypotheses are generated and their scores are computed and summarized. The results 

are presented on figures 1 and 2. These two examples were chosen out of numerous 

experiments as typical for the algorithm performance. 

The two plots of Figure 1 show how the individual scores of the sorted feasible 

hypotheses are distributed. Only the top six percents of all hypotheses for the first end 

second scenario are depicted on the figure. It can be seen that the scores of the 

hypotheses dramatically reduce their values. Even more informative is Figure 2, 

where the cumulative score‟s distributions of the two scenarios are given. This figure 

confirms our expectations that only a small number of hypotheses concentrate the 

prevailing part of their total sum. One additional conclusion can be derived. The first 

scenario is much more complicated with more than 4930 hypotheses generated. In the 

second scenario, the generated hypotheses are approximately 550. It can be seen from 
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the figures that for the more complicated cases the expected effect stands out even 

more definitely. 

  

Figure 1: Hypotheses‟ score distribution. Figure 2: Cumulative score distribution. 

The description of the algorithm proposed in our previous work 
1
 follows. For 

simplicity and without losing generality two models are assumed. 

2.1. IMM-JPDA Algorithm Description 

The IMM JPDA algorithm starts with the same step as IMM PDA algorithm,
5
 but in 

cycle for every particular target in the cluster. 

Step 1. Computation of the mixed initial conditions t0

ix̂  for every target  i   and for 

the filter, matched to model  t: 

a) mixed state estimate 
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Here  
s

iP  is covariance update of model s for target i. 

Next, some JPDA steps follows.  

Step 2. State predictions   ˆ0 1kkx t
i   and covariance predictions  10 kkP t

i  for the 

next scan k for every target and for every model are calculated.  

Step 3. In this step, after receiving the set of measurements at scan  k, a clustering is 

performed. Further on, it is assumed that the algorithm will proceed with every 

particular cluster. 

At this point, in the traditional JPDA algorithm, hypotheses generation has to be 

performed. However, to avoid combinatorial explosion we include here our 

innovation. 

Step 4. Calculating „predicted model probabilities‟: 
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where  1kt

i   is the probability that the model t is correct at scan (k-1) and  pst  are 

Marcovian switching probabilities. 

Now, the individual model state predictions are merged for every particular target: 
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Step 5. We are now ready to continue with the hypotheses generation and hypotheses 

score computation. Hypotheses generation is another combinatorial problem that will 

be discussed in the next section.  

After generating all feasible hypotheses, hypothesis probability is computed by the 

expression 
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where 
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  - is probability density for false returns, 

  S2
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  - is probability density that measurement  j  originates from 

target  ,i  and the following additional notations are used: MN  - total number of 

measurements in the cluster,
T

N  - total number of targets, dij – statistical distance, 

nDN  - number of not detected targets. The step ends with the standard normalization 
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where HN  is the total number of hypotheses. 

Step 6. In this step, association probabilities are calculated. To compute for a fixed i  

the probability  ijp   that observation  j  originates from track  i , we have to take a 

sum over the probabilities of those hypotheses in which this event occurs: 
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lij HPp        for    ,, km1j i and  TN1i ,, , (7) 

where jL   is a set of indices of all hypotheses, which include the event mentioned 

above, mi(k) is the number of measurements falling in the gate of target i,  and  TN  is 

the total number of targets in the cluster. 

Step 7. After association probabilities computation, the JPDA algorithm continues as 

a PDA algorithm for every individual target. For every target the „merged‟ combined 

innovation is computed 
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Step 8. This is the last step of our description. At this step, our algorithm returns to 

the multiple model case by splitting „merged‟ combined innovation from the previous 

equation. For every individual target and for every particular model the combined 

innovations are computed: 
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The last few steps of this algorithm fully coincide with the well-known IMM PDA 

algorithm 
5
 and will be omitted from the current description. 

3. Accelerating Extension to the IMM JPDA Algorithm 

Our extension to IMM JPDA algorithm is directed to the most time consuming part of 

the algorithm, which concerns hypotheses generation and their scores computation. If 

we take as a simple example a cluster with 4 targets and 10 measurements distributed 

in their validation regions (Table 1), the total number of all feasible hypotheses for 

this example approaches 400. When, however, the number of targets in the cluster 

exceeds 5 or 6 and there are more than 15 measurements in their gates, the number of 

all hypotheses to be generated reaches thousands. To avoid these overwhelming 

computations we propose the next trade-off: to take into consideration only small part 

of all feasible hypotheses with highest scores and to concentrate on the prevailing 

share of the total score sum. 

Table 1: Indices of the measurements falling in the gates of corresponding targets 

T1 T2 T3 T4 

0 0 0 0 

4 6 3 1 

8 7 4 2 

9 8 5 3 

  6 4 

  9  

In order to find out the first K-best hypotheses we use an algorithm due to Murty 
2
 

and optimized by Miller et al.
 3
 This algorithm gives a set of assignments to the 

assignment problem,
4
 ranked in increasing order of cost. As a first step in solving this 

problem we have to define the cost matrix of the assignment problem. It can be seen 

that the score of any particular hypothesis (equation 5) is an expression of multipliers. 

The score of every feasible hypothesis, i.e., the probability of being true, can be 

calculated using a table similar to Table 1, but instead indices in the boxes of the 

Table 1 we need to put multipliers equal to probability of assigning the given 

measurement to the corresponding target (Table 2).  
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Table 2: Multipliers of the corresponding measurements 

T1 T2 T3 T4 

 DP1

0 

 
DP1

 

 
DP1

 

 
DP1

 D14Pg  
D26Pg  

D33Pg  
D41Pg  

D18Pg  
D27Pg  

D34Pg  
D42Pg  

D19Pg  
D28Pg  

D35Pg  
D43Pg  

  D36Pg  
D44Pg  

  D39Pg   

Now, properly combining indices from Table 1, thus generating every one of the 

feasible hypotheses we can at the same time multiply corresponding elements from 

Table 2, obtaining the score of the so generated hypothesis (equation 5). As it is well 

known, feasibility of hypothesis meets two important constraints: a) no target can 

create more than one measurement, and b) no measurement can be assigned to more 

than one target.  

On the other side, every solution of the assignment problem represents a sum of 

elements of the cost matrix. We have to define this cost matrix in such way, that the 

value of every possible solution of the assignment can be potentially a score of some 

feasible hypothesis. Let us take logarithm from both sides of (5). From the left-hand 

side we obtain logarithm of hypothesis probability and, from the right-hand side, a 

sum of logarithms of elements from Table 2. This correspondence between 

multipliers in equation (5) and the sum of their logarithms gives a hint of how to 

construct the cost matrix and to solve the problem mentioned above. 

We construct a cost matrix containing instead the elements of Table 2, their negative 

logarithms. If we find the optimal solution (in this particular case – the minimum) of 

the assignment problem with this cost matrix it will coincide with the hypothesis with 

highest probability, i.e., both the optimal solution and the highest probability 

hypothesis will associate the targets with the same measurements. The cost matrix of 

a cluster from Table 1 appears in Table 3. 

Table 3: The cost matrix of the example 

 f1 F2 f3 f4 z1 z2 z3 z4 z5 z6 z7 z8 z9 

T1 ln0             ln14       ln18 ln19 

T2   Ln0               ln26 ln27 ln28   

T3     ln0       ln33 ln34 ln35 ln36     ln39 

T4       ln0 ln41 ln42 ln43 ln44           
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where  

   DP 1lnln0 ,    Dijij Pglnln  . 

The symbol     in the matrix represents one and the same value with only 

requirement to be greater than the greatest element out of the set of elements denoted 

with ln . In order to use any of the widespread assignment algorithms, as well as the 

algorithm 
1
 for finding the K-best hypotheses, the matrix from Table 3 has to be 

added up to square matrix filling in the remaining rows with the same value  . The 

first four columns of the matrix in Table 3 correspond to false measurements, i.e., 

assigning first row to first column, the second row to the second column, etc., means 

that no measurement originated from this target. Columns from five to thirteen 

represent the corresponding measurements falling in the validation regions of the 

targets.  

When the algorithm for finding K-best assignments is initiated it will find K solutions 

of the problem with lowest sums of negative log-likelihood (or with highest 

probabilities). After receiving these K values their anti-logarithms have to be 

computed in order to obtain the K-best hypotheses probabilities. Next, these 

probabilities have to be normalized by equation (6), but now the sum is up to K: 
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Henceforth, this algorithm fully coincides with the algorithm described in the 

previous section, continuing with the step 6. 

One important practical question, closely related to the proposed approach, arises in 

this regard: how many hypotheses K to be found out. When deciding on the value of 

K we have to realize that this value has to be optimal in some sense. On one hand, the 

smaller the value of K, the proposed algorithm performs faster. On the other hand, 

however, too small values of K can lead to distortion in assignment probabilities 

computation (equation 7). This question will be discussed in the next section. 

4. Simulation Results 

We compare the algorithm presented in this paper with the same algorithm without 

acceleration discussed in previous section (our previous algorithm 
1
). These two 

algorithms were tested extensively on a variety of scenarios involving different 

numbers of maneuvering and closely spaced targets and in presence of heavy clutter. 

We construct a set of scenarios with 3, 4 and 5 targets in a cluster and in the presence 
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of moderate and heavy clutter. The scenarios are similar to those from our previous 

paper 
1
 where we searched for the limits of the IMM JPDA algorithm in terms of the 

number of targets in a cluster. 

The first step in preparing the common frame for testing is to decide how many K-

best hypotheses need to be generated. We mentioned in the end of the previous 

section that the value of K has to be, in some sense, optimal so that: a) it is 

sufficiently small to ensure acceleration of the algorithm, and, in the same time, b) it 

is not too small to lead to distortion in computing assignment probabilities. 

As it can be seen from Figure 1, the scores of feasible hypotheses decrease very 

rapidly and some 5-10 percents of them (Figure 2) cover more then 95 percents of the 

total score sum. However, as we know neither the total number, nor the total sum, we 

try to derive indirect criterion for determining the value of K. One possible 

expression can be 

     nHnHnH  1 , 

where  1 . Here with H(n) the probability density of n
th

 hypothesis to be true is 

denoted. The implementation of this criterion, however, did not give stable results. 

The reason is that very often there are subsets of hypotheses with very close values of 

their scores, even in the beginning of the sorted hypotheses array. Another 

expression, providing for higher stability, is 

    1HnH  . (10) 

In order to tune experimentally the value of   , a range of experimental runs have 

been carried out. Every one run is performed with scenario with the same number of 6 

targets and 12 measurements but with different reciprocal (relative) location. 

Averaging over 1000 runs, the following simulation results have been received 

(Table 4). 

The first column of the Table 4 contains the different values of   , the second and 

third columns contain respectively the mean and the largest number (worst case) of 

the first N-best hypotheses in accordance with (10). The fourth and fifth columns 

contain mean and lowest values of the ratio of the total score sum of these N-best 

hypotheses. In opposite to the hypotheses‟ number, the worst case for this ratio is its 

lowest value. 
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Table 4: Number of hypotheses and ratio of the total score sum for different values of   as 

per equation (10) 

  Nmean Nwst Rmean Rwst 

0.05 32 506 0.7842 0.6185 

0.01 179 1510 0.9414 0.8587 

0.005 286 2074 0.9690 0.9184 

0.001 632 3350 0.9942 0.9784 

0.0005 779 3797 0.9973 0.9899 

0.0001 1082 4459 0.9995 0.9982 

Now, we can choose the most suitable value for   . For example, if we choose the 

value of  = 0.005, after summation of the first 286 hypotheses we ensure, in 

average, the attainment of nearly 97 percent of the total score sum. If we take into 

account that the mean of the total hypotheses number for this experiment is 9780 we 

can conclude, that choosing the value of   = 0.005 we can generate and process the 

first 3 percent of all feasible hypotheses ensuring 97 percent of the total score sum. 

Similar conclusions can be drawn for   = 0.01. Consequent experiments confirm 

that the values 0.01 and 0.005 for     are equally appropriate. 

  

Figure 3: Three targets with crossing trajectories and Poisson parameter 1V   for the left, 

and 2V  for the right picture 

To test further the presented algorithm we constructed a range of scenarios with 

increasing complexity in terms of number of targets and presence of clutter. The 

chosen scenarios include 3, 4 and 5 targets with closely spaced and crossing 
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trajectories (Figures 4 and 5). The included clutter has been modeled as a Poisson 

process with parameter V , where B is spatial false alarm density and V  is 

validation volume: 

   
!k

Vm

k
m

eV
VmNP

k 




 . 

For every scenario two levels of clutter have been tested: with 1V  to simulate 

moderate clutter, and 2V for heavy clutter. The results achieved can be 

summarized as follows: 

A.   Scenario with 3 closely spaced targets.  

Table 5: Time per cluster in seconds for 3-targets scenario 

 All hypotheses computation 

/targets in a cluster/ 

First K-best hypotheses only 

/targets in a cluster/ 

 2 targets 3 targets 2 targets 3 targets 

V =1 0.016 0.062 0.02 0.26 

V =2 0.011 0.136 0.09 0.68 

The comparison of presented algorithm with the algorithm where all feasible 

hypotheses are computed gives unexpected results – the latter algorithm spends less 

processing time (Table 5). Obviously the program frame for finding out the first K-

best hypotheses is heavy and unsuitable for simple cases. Even so, both approaches 

give results far below the real time implementation threshold. 

B.   Scenario with 4 closely spaced targets.  

Table 6: Time per cluster in seconds for 4-targets scenario 

 All hypotheses computation 

Targets in a cluster 

First K-best hypotheses only 

Targets in a cluster 

Targets in a cluster 3 targets 4 targets 3 targets 4 targets 

V =1 0.03 3.94 0.79 3.39 

V =2 0.22 124.7 3.42 9.86 
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It can be seen in this case (Figure 4) that when the scenario becomes denser the 

results become comparable (especially for clusters with 4 targets) and for the heaviest 

case ( V =2) the processing time for the first algorithm increases almost 

exponentially (Table 6). In the same time, the processing time for the new algorithm 

increases polinomially.  

  

Figure 4: Four-target scenario with 

2V  

Figure 5: Five-target scenario with 

2V  

C.    Scenario with 5 closely spaced targets.  

For this scenario (Figure 5) only the proposed algorithm has been tested. For the most 

dense case, when five closely spaced targets have to be tracked in heavy clutter we 

compute average time per scan  t=8.7 sec. But as it can be seen from Table 7, when 

in a given scan all five targets fall into the cluster the processing time becomes twice 

the average time. It can be stated that this case is the limit for algorithm 

implementation. 

Table 7: Time per cluster in seconds for 5-targets scenario 

 First K-best hypotheses computation 

Targets in a cluster 

Targets in a cluster 3 targets 4 targets 5 targets 

V =1 0.35 1.16 8.2 

V =2 1.58 6.36 15.4 
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5. Conclusions 

In this paper a new algorithm is presented for tracking closely spaced targets in 

moderate and heavy clutter. This algorithm is an improved version of an algorithm 

previously presented earlier by the authors. Instead of all feasible hypotheses in the 

new algorithm only part of the hypotheses are generated. By means of an algorithm 

for finding the first K-best solutions of the assignment problem we generate the first 

K-best feasible hypotheses in terms of their probability of being true. This trade-off 

does not lead to observable assignment probability degradation and in the same time 

definitely speeds up the algorithm processing. 
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