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1. Introduction 

The construction of algorithms for finding the first K-best solutions to the assignment 

problem has attracted a great deal of interest in recent years. Starting with the pioneer 

work of MURTY, 
5
 the investigations continued with works of DANCHICK and 

NEWNAM 
6
 and with the more recent work of MILLER, STONE and COX. 

7
 In the last of 

these works, following the Murty‘s method the authors implement three 

optimizations, producing a speedup by factor of over 20. On the other hand, the 

measurements-to-target association as part of a frame of MHT approach can be 

successfully formulated as a classical assignment problem. So, using an algorithm 

capable to find exact first K-best solutions of the so formulated assignment problem 

gives us K hypotheses of highest probability without first generating all feasible 

hypotheses and then pruning them.
3
  

In one of their works, NAGARAJAN, CHIDAMBARA and SHARMA, keeping essentially 

the REID‘s approach, proposed an algorithm for finding directly K hypotheses of 

highest probability. 
1
 In another of their works, NAGARAJAN and co-authors presented 

a new approach for calculating probability of each hypothesis.
2
 They suggested to 

utilize information from the signal processor of the radar for improving the tracking 

process. As a result, in the algorithm of NAGARAJAN 
1
 the authors consider only two 

possibilities for any measurement, received at scan k : a) to be originated from one of 

the tracking targets; or b) to be from a new target. In our previous work 
4
 we 

proposed an extension of the algorithm of NAGARAJAN 
1
 achieving considerable 

speedup of finding the first K-best hypotheses. In the present work we further 

improved the extended algorithm and carried out more comprehensive experiments 

with more sophisticated scenarios and by using more powerful PC processor. As a 

result, some additional findings are presented, too. 

This work is organized as follows. In the next section the main ideas from the work 
2
 

of NAGARAJAN et al are outlined including the main expressions of hypotheses 
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probabilities computation. In section 3 the NAGARAJAN‘s algorithm is discussed and 

its principle steps are described. Section 4 contains presentation of the improved 

version of the algorithm and discussion of additional rules in algorithm processing. In 

Section 5 Experimental results are included and analyzed in section 5. The results are 

summarized in Section 6. 

2. Problem formulation 

In their work 
2
 NAGARAJAN and co-authors present new approach for calculating 

probability of each hypothesis. They suggest utilizing information from the signal 

processor of the radar in order to improve the tracking process. As a result, in the 

algorithm presented in their companion paper, 
1
 the authors consider only two 

possibilities for any measurement, received at scan  k : a) to be originated from one 

of the tracking targets; or b) to be from a new target. 

Following the notation from the work of REID, 
3
 the authors assume at scan k  N  

targets NTTT ,...,, 21 , their predicted track measurements )(ˆ),...,(ˆ),(ˆ 21 kzkzkz N  and 

associated covariance matrices )(),...,(),( 21 kSkSkS N , respectively, according to 

hypothesis, say, 1k
g , retained after scan 1k . They assume also the class 

conditional density of measurement )(kzi   Mi ,...,2,1  to be given by normal 

distribution 

  ji Tkzp /)(  =  )(),(ˆ);( kSkzkzN jji  ,    Nj ,...,2,1 .  (1) 

Using the assumption, mentioned above, and following the Bayes theorem, they 

derive for probability of the event ij  that the i -th measurement is from j -th target 
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Considering all hypotheses retained at the end of scan 1k , the authors derive 

recursive formula for calculating probability of every new hypothesis at scan k  

according to every one hypothesis at scan 1k  
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Here, C  is normalization constant and   1,, k
ghji  is probability calculated in 

uation (2). 

3. Nagarajan's algorithm 

The most important feature of this formula is that the probability of any new 

hypothesis is proportional to certain factors already evaluated. The advantage of this 

feature can be seen in the algorithm, presented below.
1
 

Hereafter, we shall assume one hypothesis retained after the 1k -th scan, taking into 

account that presented part of the algorithm can be repeated for any additional 

hypothesis at scan 1k . For simplifying the notation, let‘s represent factors   from 

equation (3) as  tm, , where kMm ,...,2,1  denotes measurements indices and 

newN TTTTt ,,...,, 21  denotes targets‘ indices. The values of  , as it has been 

mentioned above, can be previously evaluated. Table 1 contains such kind of values 

from the example cited in the paper of NAGARAJAN et al. 
1
 

The score of any feasible hypothesis will contain eight terms in the product as 

presented in Table 1. A hypothesis is said to be feasible if no more than one 

measurement is associated with any known target, but multiple measurements can be 

associated with new targets (the last row in Table 1). We can see, however, that if we 

convert Table 1 dividing every column‘s element by the last element of the column 

(from newT -row), the arrangement of the hypothesis according to their scores will not 

be changed (as it is seen from Table 2). 

Table 1: The cost matrix of the example 

 M1
 M2

 M3
 M4

 M
5

 
M6

 M7
 M8

 

T1
 0.37 - 0.35 0.61 0.72 0.43 - 0.15 

T2
 0.23 0.45 0.33 0.15 0.2 0.37 0.72 0.6 

T3
 - 0.35 0.25 0.21 - 0.16 0.27 0.15 

T4
 0.35 0.17 0.05 - 0.07 - - 0.08 

Tnew
 0.05 0.03 0.02 0.03 0.01 0.04 0.01 0.02 
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Table 2: The cost matrix with normalized elements 

 M1
 M2

 M3
 M4

 M
5

 
M6

 M7
 M8

 

T1
 7.4 - 17.5 20.3 72 10.8 - 7.5 

T2
 4.6 15 16.5 5 20 9.2 72 30 

T3
 - 11.7 12.5 7 - 4 27 7.5 

T4
 7.0 5.7 2.5 - 7 - - 4 

Tnew
 1 1 1 1 1 1 1 1 

And the last step before algorithm representation is to construct the preferred 

measurements matrix (Table 3). In the row 1T  of this table the value 5 means that 5M  

is the most preferable measurement for the first target, the next value of 4 means that 

measurement 4M  is the next preferable and so on. For example, one possible 

hypothesis is (5,7,3,1). Another way of expressing this hypothesis is by using 

preference index from the first row of Table 3 - (0,0,1,0). We can notice that the 

smaller the index is, the more preferable is the corresponding measurement.  

Table 3: The preferred measurements matrix 

 M1
 M2

 M3
 M4

 M
5

 
M6

 M7
 M8

 

I  0 1 2 3 4 5 6 7 

T1
 5 4 3 6 8 1 - - 

T2
 7 8 5 3 2 6 4 1 

T3
 7 3 2 8 4 6 - - 

T4
 1 5 2 8 3 - - - 

Before describing the steps of the algorithm it will be useful to discuss the next 

lemma. Let  iP  represents the probability of the hypothesis i  being true and let 

)(nInd i  represents the n -th element of preference-index presentation of i . The 

suggested lemma is: 

   ji PP    if )()( nIndnInd ji   

for each value of n  from 1 to the number N of known targets. Taking two hypotheses 

in preference-index presentation by means of this lemma we can conclude, in some 
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cases, which is more likely without actually evaluating the products of their scores. 

This may be considered as one of the main achievements presented in the first quoted 

work by NAGARAJAN et. al. 
1
  

For clearness of notation we shall say that a hypothesis, presented in way of 

preference-indexes, is of level l  if the sum of its preference indices is equal to l . 

Thus the hypothesis (0,0,0,0) is of level 0, hypothesis (0,1,0,0) is of level 1 and 

hypothesis (1,0,2,1) is of level 4, and so on. Likewise, if two hypotheses are subject 

to the lemma's rule - )()( nIndnInd ji  , we shall say that hypothesis j  is 

consequence from hypothesis i , i.e., it can be constructed by only adding some 

values to the preference-index presentation of i . The hypotheses generation can be 

represented like constructing a tree. From every hypothesis (nod) at a given level l, N 

hypotheses (branches) of level l+1 can be generated by simply incrementing 

preference indices, one at a time. Every generated hypothesis has to be checked: a) 

for feasibility, and b) if it is a consequence of some of the previously found feasible 

hypotheses. For the normal algorithm processing three lists have to be maintained: a) 

list of found feasible hypotheses sorted by their scores (candidate hypotheses); b) list 

of unfeasible hypotheses for the subsequent processing without calculating the scores; 

and c) ranked list of the best hypotheses.  

The algorithm starts with checking the 0-level hypothesis. If it proves to be feasible, 

this is the first-best hypothesis (according the lemma presented above) and we put it 

in the ranked list of best hypotheses. We say that consecutive best hypothesis is found 

if no meaningful hypothesis of a higher level can be generated. This will be the first 

hypothesis out of sorted feasible hypotheses list. Every time we find consecutive best 

hypothesis, we use it for constructing the next hypothesis‘ tree.  

The particular steps of the algorithm stated in the cited work 
1
 are as follows: 

Step 0. We take the just found consecutive-best hypothesis from the top of 

feasible (or candidate) hypotheses list and begin constructing a tree. 

Step 1. Hypotheses generation of level 1l  from a given hypothesis at level l. 

Step 2. Checking feasibility of the created hypothesis. 

Step 3. If the hypothesis is feasible, we check whether it is consequence of any 

hypothesis out of the candidate hypotheses list: 

a) If it is not - we include it in the candidate hypotheses list; 

b) If it turns out that the checked hypothesis is consequence of some of the 

candidate hypotheses, we discard it. 

Step 4. If the hypothesis is not feasible and it is not consequence of any of the 

hypotheses in the candidate hypotheses list, we implement another checking – 
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whether it is consequence from any of the hypotheses in the list of non-feasible 

hypotheses. If it is not, we include the hypothesis in this list for subsequent 

processing. Otherwise, we discard it and continue with the next step. 

Step 5. We take the subsequent hypothesis from the unfeasible hypotheses list 

and return to Step 1. If all hypotheses from the unfeasible hypotheses list are already 

used and the list is empty, we say that we found the next best hypotheses and return to 

Step 0. 

The algorithm terminates when the list of the first K-best hypotheses fills up. 

The simulation realizing this algorithm shows significant reduction of the number of 

hypotheses to be processed, as well as the running time for the task. However, if we 

take an example with 10N  targets and include in the scenario 15M  

measurements, combinatorial problems arise in two directions: a) time of processing 

and b) memory storage limitation (especially for the list of non-feasible hypotheses 

for subsequent processing). 

4. Extended algorithm 

Before describing our extension we shall further elaborate on the NAGARAJAN‘s 

algorithm processing. Let us take the four hypotheses at level 1 from the example of 

their paper 
1
 - (1,0,0,0), (0,1,0,0,), (0,0,1,0) and (0,0,0,1). We can generate now four 

new hypotheses at level 2 from every hypothesis of level 1 (Table 4):  

Table 4: Hypotheses generation process 

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1 

2,0,0,0 1,1,0,0 1,0,1,0 1,0,0,1 

1,1,0,0 0,2,0,0 0,1,1,0 0,1,0,1 

1,0,1,0 0,1,1,0 0,0,2,0 0,0,1,1 

1,0,0,1 0,1,0,1 0,0,1,1 0,0,0,2 

In table 4, the elements above the main diagonal are the same as those under the main 

diagonal. In our extension we shall avoid hypotheses duplication for saving processor 

time. There is another part of the algorithm, where needless hypotheses generation is 

carried out. Let us take the non-feasible hypothesis (0,1,0,0,0,0) assuming repeated 

measurements at 2-th and 3-rd positions. According to the step 1, we can create six 

new level 2 hypotheses: (1,1,0,0,0,0), (0,2,0,0,0,0), (0,1,1,0,0,0), (0,1,0,1,0,0), 

(0,1,0,0,1,0), and (0,1,0,0,0,1). It is easy to conclude that every hypothesis after the 

third, as well as their ‗successors‘ up to the bottom of the Table 3 will be non-
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feasible. The reason is that the unit in the 2-nd place and the zero in the 3-rd place of 

the origin correspond to the repeated measurements according to the measurement-

oriented presentation. So, we can stop hypotheses generation after the second 

hypothesis saving both time of the processor and memory storage. 

Two additional terms are introduced for convenience. Every new hypothesis at a 

given level is created from some hypothesis of the upper level by incrementing its 

preference-index presentation at some point. We call this point ‗creation point,‘ or 

CP. Secondly, in regard to the conclusion that for some unfeasible hypothesis there is 

no use to continue hypotheses‘ creation after the point where repeated measurement 

occurs, we call that point ‗breaking point,‘ or BP. It is obvious that the cycle of 

hypotheses‘ generation has to be run from CP to BP only. Moreover, when for some 

hypothesis out of unfeasible hypotheses list CP > BP, we discard this hypothesis, 

cutting off the corresponding part of the hypotheses‘ tree.  

Step 0. The last just found consecutive-best hypothesis from the top of 

feasible (or candidate) hypotheses list serves to begin the construction of a tree. 

Step I. A new hypothesis of level 1l   is created from a given hypothesis at 

level l  by incrementing preference indices one at a time; the cycle is run only from 

CP to BP. When a new hypothesis of level 1l   is created, we remember its ‗creation 

point‘. 

Step II. On this step we check whether the new hypothesis is consequence of 

any of the hypothesis out of the candidate hypotheses list. If it is consequence of 

some of the candidate hypothesis, we discard it and go back to Step I. Otherwise 

continue with the next step. 

Step III. If the checked hypothesis is not consequence of any of the candidate 

hypotheses, we continue with the feasibility check. If the hypothesis is feasible, it is 

included in the candidate hypotheses list and then we return to step I. 

Step IV. If the checked hypothesis is not feasible, we examine the place, 

where the repeated measurement occurs and remember it as a ‗breaking point.‘ After 

that, we include it in the list of non-feasible hypotheses for subsequent processing. 

Step V. We take the subsequent hypothesis from the unfeasible hypotheses list 

and return to Step 1. If all hypotheses from the unfeasible hypotheses list are already 

used and the list is empty, we say that we have found the next-best hypotheses and the 

return to Step 0. 

As in the previous case, the algorithm terminates when the list of the first K-best 

hypotheses fills up. 

There is a sound rationale for some extensions in the proposed algorithm. Starting 

hypotheses generation from index CP, we avoid redundant steps of the algorithm in 
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two directions: a) preventing hypotheses duplication, and so, saving processor‘s time 

and memory storage, especially for the unfeasible hypotheses list, and b) obviating 

the checking whether the hypothesis is consequence of any hypothesis out of the 

unfeasible hypotheses list. This list is much longer than the feasible hypotheses list 

and, thus, its checking is one of the most time-consuming parts of the algorithm.  

The second issue is the ‗breaking point.‘ When the cycle of hypotheses generation is 

stopped at BP, we truncate significant parts of the hypotheses‘ tree and so achieve 

savings of processor time and memory storage. It is important to notice that this 

second extension is effective only in combination with the first one. Finally, in our 

extensions feasibility checking and consequence checking are rearranged. The merits 

are that non-feasibility is not yet a reason to discard a hypothesis, whereas, if it is 

consequence of any of the feasible hypotheses, we can readily discard it.  

5. Simulation results 

The program realization of NAGARAJAN algorithm, as well as the realization of its 

extension has been used for numerical experiments. The first experiment includes the 

example from the work of NAGARAJAN. 
1
 We run this example with NAGARAJAN's 

algorithm for proving the correct program realization. The results from the 

experiment fully coincide with the results in the original paper. Then, we run the 

same example with the extended algorithm. If we accept the following abbreviations: 

GH - number of Generated Hypotheses, HCF - number of Hypotheses Checked for 

Feasibility, NAG - NAGarajn's algorithm, EXT - EXTended algorithm, T/M - 

number of Targets/ Measurements, the experimental results may be presented in 

Table 5. 

Table 5: Comparison of the two algorithms on the cited example 1 

 NAG EXT 

GH 90 18 

HCF 32 8 

Even in such a simple case with 4 targets and 8 measurements in the cluster the 

advantage of the extended algorithm is obvious.  

Another series of experiments have been run with 13 different scenarios with 

increasing complexity. Table 6 compares created hypotheses and those hypotheses 

for which feasibility checks had to be made. The 6-th and 7-th columns contain 

running time in seconds for finding the first 100-best hypotheses on a 1.4GHz 

AMD/XP processor. The last column contains speed advantage ratio. For the simplest 

cases the running time of the extended algorithm proved to be less than the time 
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resolution of the computer. Additionally, for the most complicated cases the running 

time of the original algorithm is out of any reasonable limits; the simulations have not 

been carried out in such cases. Each value in the table was obtained by averaging 

over 50 independent program runs with 50 different values of random generator seed. 

Of course, one and the same random number stream has been used for any one 

scenario. As it can be seen from Table 6, the scenario with 8 targets and 13 or 14 

measurements prove to be the practical implementation limit of Nagarajan's algorithm 

(assuming radar with 10 sec. scan). In the last and most complicated scenarios (with 

15 targets and more than 20 measurements) the extended algorithm reaches its limit 

for practical implementation, even though the average running time for these 

scenarios is less than the assumed scan duration of 10 seconds. The problem is that 

for the some of experiments, i.e. the heaviest scenario, the processing time of the 

algorithm exceeds 10 seconds. 

Table 6: Comparison of the two algorithms performance in terms of generated and checked 

hypotheses and processing time 

Targets/ 

Measure-

ments 

(T/M) 

GH HCF Time  

(in seconds) 

Speed 

advantage 

ratio 

 NAG EXT NAG EXT NAG EXT  

6/11 1476 - 310 - 0.03 - - 

7/12 5547 - 1117 - 0.355 - - 

8/13 27211 - 6291 - 4.81 - - 

8/14 45550 2913 12650 1760 9.42 0.03 314 

9/15 104168 6586 31788 3955 30.83 0.112 275 

10/16 190536 15320 72226 10014 67.43 0.327 206 

11/17 306024 22724 126458 14688 117.14 0.562 208 

12/18 576424 39466 236837 28406 211.75 1.082 196 

13/19 - 48627 - 35071 - 1.833 - 

13/20 - 65536 - 48103 - 2.296 - 

14/21 - 76560 - 57167 - 3.425 - 

15/22 - 103787 - 72405 - 5.278 - 

15/25 - 133526 - 103478 - 6.843 - 
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Through an additional experiment we reveal an interesting and very useful feature of 

the presented algorithm. We have tested the dependence of the processing time on 

number of first K-best hypotheses with 14T/21M scenario (Table 6). Surprisingly, the 

experiment exhibits very week dependence of the running time on the number of first 

best hypotheses found (Table 7). 

The explanation of this result is straightforward: for the main part of its work the 

algorithm determines the first best hypothesis. At that time, the list of candidate 

hypotheses is full and for finding any subsequent hypothesis only a few additional 

operations have to be performed. This feature makes the presented algorithm a good 

alternative to the well-known algorithms, proposed recently, for finding the first K-

best hypotheses, directed for use in the framework of the MHT approach.  

Table 7: Processing time (in seconds) for finding different number of first K-best hypotheses 

Rand-

Seed 

values 

Number of the first K-best hypotheses found 

1

100

T
T  

 1 10 20 50 100  

13 2.03 2.09 2.09 2.14 2.42 1.19 

15 5.5 5.5 5.55 5.76 6.37 1.16 

17 1.48 1.53 1.59 1.92 2.69 1.82 

25 3.13 3.13 3.18 3.24 3.57 1.14 

27 2.03 2.09 2.14 2.26 2.58 1.27 

33 1.82 1.82 1.87 2.19 2.86 1.57 

35 2.2 2.2 2.25 2.8 2.91 1.32 

53 2.74 2.75 2.76 2.81 2.91 1.06 

55 3.42 3.51 3.52 3.68 4.12 1.20 

65 5.06 5.1 5.11 5.28 5.54 1.09 

Conclusion 

This paper presented an improved version of our extension of NAGARAJAN‘s 

algorithm.
 1
 Defining two points in the hypotheses generation cycle—‗creation point‘ 

and ‗breaking point‘—a considerable reduction of hypotheses‘ tree has been 

achieved. By rearranging feasibility checking and consequence checking we attain 

additional pruning of this tree. As combined result of the improvements, the time 

necessary to implement the presented algorithm has been reduced by more than two 
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orders of magnitude compared to NAGARAJAN‘s algorithm. In addition, taking into 

account the week dependence of the processing time on the number of the best 

hypotheses found, it can be inferred that the presented algorithm can be successfully 

implemented besides other algorithms finding the first K-best hypotheses in 

implementing multiple targets tracking. 
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