
INFORMATION & SECURITY. An International Journal, Vol. 9, 2002 130-140

 I&S

AN IMPROVED VERSION OF A MULTIPLE

TARGET TRACKING ALGORITHM

Ljudmil BOJILOV

1. Introduction

The construction of algorithms for finding the first K-best solutions to the assignment

problem has attracted a great deal of interest in recent years. Starting with the pioneer

work of MURTY,
5
 the investigations continued with works of DANCHICK and

NEWNAM
6
 and with the more recent work of MILLER, STONE and COX.

7
 In the last of

these works, following the Murty‘s method the authors implement three

optimizations, producing a speedup by factor of over 20. On the other hand, the

measurements-to-target association as part of a frame of MHT approach can be

successfully formulated as a classical assignment problem. So, using an algorithm

capable to find exact first K-best solutions of the so formulated assignment problem

gives us K hypotheses of highest probability without first generating all feasible

hypotheses and then pruning them.
3

In one of their works, NAGARAJAN, CHIDAMBARA and SHARMA, keeping essentially

the REID‘s approach, proposed an algorithm for finding directly K hypotheses of

highest probability.
1
 In another of their works, NAGARAJAN and co-authors presented

a new approach for calculating probability of each hypothesis.
2
 They suggested to

utilize information from the signal processor of the radar for improving the tracking

process. As a result, in the algorithm of NAGARAJAN
1
 the authors consider only two

possibilities for any measurement, received at scan k : a) to be originated from one of

the tracking targets; or b) to be from a new target. In our previous work
4
 we

proposed an extension of the algorithm of NAGARAJAN
1
 achieving considerable

speedup of finding the first K-best hypotheses. In the present work we further

improved the extended algorithm and carried out more comprehensive experiments

with more sophisticated scenarios and by using more powerful PC processor. As a

result, some additional findings are presented, too.

This work is organized as follows. In the next section the main ideas from the work
2

of NAGARAJAN et al are outlined including the main expressions of hypotheses

 Ljudmil Bojilov 131

probabilities computation. In section 3 the NAGARAJAN‘s algorithm is discussed and

its principle steps are described. Section 4 contains presentation of the improved

version of the algorithm and discussion of additional rules in algorithm processing. In

Section 5 Experimental results are included and analyzed in section 5. The results are

summarized in Section 6.

2. Problem formulation

In their work
2
 NAGARAJAN and co-authors present new approach for calculating

probability of each hypothesis. They suggest utilizing information from the signal

processor of the radar in order to improve the tracking process. As a result, in the

algorithm presented in their companion paper,
1
 the authors consider only two

possibilities for any measurement, received at scan k : a) to be originated from one

of the tracking targets; or b) to be from a new target.

Following the notation from the work of REID,
3
 the authors assume at scan k N

targets NTTT ,...,, 21 , their predicted track measurements)(ˆ),...,(ˆ),(ˆ 21 kzkzkz N and

associated covariance matrices)(),...,(),(21 kSkSkS N , respectively, according to

hypothesis, say, 1k
g , retained after scan 1k . They assume also the class

conditional density of measurement)(kzi  Mi ,...,2,1 to be given by normal

distribution

  ji Tkzp /)(=  )(),(ˆ);(kSkzkzN jji , Nj ,...,2,1 . (1)

Using the assumption, mentioned above, and following the Bayes theorem, they

derive for probability of the event ij that the i -th measurement is from j -th target

  
 
 



j

ji

ji

ij
Tkzp

Tkzp
kzTP

)(

)(
)(. (2)

Considering all hypotheses retained at the end of scan 1k , the authors derive

recursive formula for calculating probability of every new hypothesis at scan k

according to every one hypothesis at scan 1k

132 An Improved Version of a Multiple Targets Tracking Algorithm

      













 




kM

i

k
gh

k
g

k
h jiP

C
P

1

11 ,,
1

 . (3)

Here, C is normalization constant and  1,, k
ghji is probability calculated in

uation (2).

3. Nagarajan's algorithm

The most important feature of this formula is that the probability of any new

hypothesis is proportional to certain factors already evaluated. The advantage of this

feature can be seen in the algorithm, presented below.
1

Hereafter, we shall assume one hypothesis retained after the 1k -th scan, taking into

account that presented part of the algorithm can be repeated for any additional

hypothesis at scan 1k . For simplifying the notation, let‘s represent factors  from

equation (3) as  tm, , where kMm ,...,2,1 denotes measurements indices and

newN TTTTt ,,...,, 21 denotes targets‘ indices. The values of  , as it has been

mentioned above, can be previously evaluated. Table 1 contains such kind of values

from the example cited in the paper of NAGARAJAN et al.
1

The score of any feasible hypothesis will contain eight terms in the product as

presented in Table 1. A hypothesis is said to be feasible if no more than one

measurement is associated with any known target, but multiple measurements can be

associated with new targets (the last row in Table 1). We can see, however, that if we

convert Table 1 dividing every column‘s element by the last element of the column

(from newT -row), the arrangement of the hypothesis according to their scores will not

be changed (as it is seen from Table 2).

Table 1: The cost matrix of the example

 M1
 M2

 M3
 M4

 M
5

M6

 M7
 M8

T1
 0.37 - 0.35 0.61 0.72 0.43 - 0.15

T2
 0.23 0.45 0.33 0.15 0.2 0.37 0.72 0.6

T3
 - 0.35 0.25 0.21 - 0.16 0.27 0.15

T4
 0.35 0.17 0.05 - 0.07 - - 0.08

Tnew
 0.05 0.03 0.02 0.03 0.01 0.04 0.01 0.02

 Ljudmil Bojilov 133

Table 2: The cost matrix with normalized elements

 M1
 M2

 M3
 M4

 M
5

M6

 M7
 M8

T1
 7.4 - 17.5 20.3 72 10.8 - 7.5

T2
 4.6 15 16.5 5 20 9.2 72 30

T3
 - 11.7 12.5 7 - 4 27 7.5

T4
 7.0 5.7 2.5 - 7 - - 4

Tnew
 1 1 1 1 1 1 1 1

And the last step before algorithm representation is to construct the preferred

measurements matrix (Table 3). In the row 1T of this table the value 5 means that 5M

is the most preferable measurement for the first target, the next value of 4 means that

measurement 4M is the next preferable and so on. For example, one possible

hypothesis is (5,7,3,1). Another way of expressing this hypothesis is by using

preference index from the first row of Table 3 - (0,0,1,0). We can notice that the

smaller the index is, the more preferable is the corresponding measurement.

Table 3: The preferred measurements matrix

 M1
 M2

 M3
 M4

 M
5

M6

 M7
 M8

I 0 1 2 3 4 5 6 7

T1
 5 4 3 6 8 1 - -

T2
 7 8 5 3 2 6 4 1

T3
 7 3 2 8 4 6 - -

T4
 1 5 2 8 3 - - -

Before describing the steps of the algorithm it will be useful to discuss the next

lemma. Let  iP represents the probability of the hypothesis i being true and let

)(nInd i represents the n -th element of preference-index presentation of i . The

suggested lemma is:

   ji PP   if)()(nIndnInd ji 

for each value of n from 1 to the number N of known targets. Taking two hypotheses

in preference-index presentation by means of this lemma we can conclude, in some

134 An Improved Version of a Multiple Targets Tracking Algorithm

cases, which is more likely without actually evaluating the products of their scores.

This may be considered as one of the main achievements presented in the first quoted

work by NAGARAJAN et. al.
1

For clearness of notation we shall say that a hypothesis, presented in way of

preference-indexes, is of level l if the sum of its preference indices is equal to l .

Thus the hypothesis (0,0,0,0) is of level 0, hypothesis (0,1,0,0) is of level 1 and

hypothesis (1,0,2,1) is of level 4, and so on. Likewise, if two hypotheses are subject

to the lemma's rule -)()(nIndnInd ji  , we shall say that hypothesis j is

consequence from hypothesis i , i.e., it can be constructed by only adding some

values to the preference-index presentation of i . The hypotheses generation can be

represented like constructing a tree. From every hypothesis (nod) at a given level l, N

hypotheses (branches) of level l+1 can be generated by simply incrementing

preference indices, one at a time. Every generated hypothesis has to be checked: a)

for feasibility, and b) if it is a consequence of some of the previously found feasible

hypotheses. For the normal algorithm processing three lists have to be maintained: a)

list of found feasible hypotheses sorted by their scores (candidate hypotheses); b) list

of unfeasible hypotheses for the subsequent processing without calculating the scores;

and c) ranked list of the best hypotheses.

The algorithm starts with checking the 0-level hypothesis. If it proves to be feasible,

this is the first-best hypothesis (according the lemma presented above) and we put it

in the ranked list of best hypotheses. We say that consecutive best hypothesis is found

if no meaningful hypothesis of a higher level can be generated. This will be the first

hypothesis out of sorted feasible hypotheses list. Every time we find consecutive best

hypothesis, we use it for constructing the next hypothesis‘ tree.

The particular steps of the algorithm stated in the cited work
1
 are as follows:

Step 0. We take the just found consecutive-best hypothesis from the top of

feasible (or candidate) hypotheses list and begin constructing a tree.

Step 1. Hypotheses generation of level 1l from a given hypothesis at level l.

Step 2. Checking feasibility of the created hypothesis.

Step 3. If the hypothesis is feasible, we check whether it is consequence of any

hypothesis out of the candidate hypotheses list:

a) If it is not - we include it in the candidate hypotheses list;

b) If it turns out that the checked hypothesis is consequence of some of the

candidate hypotheses, we discard it.

Step 4. If the hypothesis is not feasible and it is not consequence of any of the

hypotheses in the candidate hypotheses list, we implement another checking –

 Ljudmil Bojilov 135

whether it is consequence from any of the hypotheses in the list of non-feasible

hypotheses. If it is not, we include the hypothesis in this list for subsequent

processing. Otherwise, we discard it and continue with the next step.

Step 5. We take the subsequent hypothesis from the unfeasible hypotheses list

and return to Step 1. If all hypotheses from the unfeasible hypotheses list are already

used and the list is empty, we say that we found the next best hypotheses and return to

Step 0.

The algorithm terminates when the list of the first K-best hypotheses fills up.

The simulation realizing this algorithm shows significant reduction of the number of

hypotheses to be processed, as well as the running time for the task. However, if we

take an example with 10N targets and include in the scenario 15M

measurements, combinatorial problems arise in two directions: a) time of processing

and b) memory storage limitation (especially for the list of non-feasible hypotheses

for subsequent processing).

4. Extended algorithm

Before describing our extension we shall further elaborate on the NAGARAJAN‘s

algorithm processing. Let us take the four hypotheses at level 1 from the example of

their paper
1
 - (1,0,0,0), (0,1,0,0,), (0,0,1,0) and (0,0,0,1). We can generate now four

new hypotheses at level 2 from every hypothesis of level 1 (Table 4):

Table 4: Hypotheses generation process

1,0,0,0 0,1,0,0 0,0,1,0 0,0,0,1

2,0,0,0 1,1,0,0 1,0,1,0 1,0,0,1

1,1,0,0 0,2,0,0 0,1,1,0 0,1,0,1

1,0,1,0 0,1,1,0 0,0,2,0 0,0,1,1

1,0,0,1 0,1,0,1 0,0,1,1 0,0,0,2

In table 4, the elements above the main diagonal are the same as those under the main

diagonal. In our extension we shall avoid hypotheses duplication for saving processor

time. There is another part of the algorithm, where needless hypotheses generation is

carried out. Let us take the non-feasible hypothesis (0,1,0,0,0,0) assuming repeated

measurements at 2-th and 3-rd positions. According to the step 1, we can create six

new level 2 hypotheses: (1,1,0,0,0,0), (0,2,0,0,0,0), (0,1,1,0,0,0), (0,1,0,1,0,0),

(0,1,0,0,1,0), and (0,1,0,0,0,1). It is easy to conclude that every hypothesis after the

third, as well as their ‗successors‘ up to the bottom of the Table 3 will be non-

136 An Improved Version of a Multiple Targets Tracking Algorithm

feasible. The reason is that the unit in the 2-nd place and the zero in the 3-rd place of

the origin correspond to the repeated measurements according to the measurement-

oriented presentation. So, we can stop hypotheses generation after the second

hypothesis saving both time of the processor and memory storage.

Two additional terms are introduced for convenience. Every new hypothesis at a

given level is created from some hypothesis of the upper level by incrementing its

preference-index presentation at some point. We call this point ‗creation point,‘ or

CP. Secondly, in regard to the conclusion that for some unfeasible hypothesis there is

no use to continue hypotheses‘ creation after the point where repeated measurement

occurs, we call that point ‗breaking point,‘ or BP. It is obvious that the cycle of

hypotheses‘ generation has to be run from CP to BP only. Moreover, when for some

hypothesis out of unfeasible hypotheses list CP > BP, we discard this hypothesis,

cutting off the corresponding part of the hypotheses‘ tree.

Step 0. The last just found consecutive-best hypothesis from the top of

feasible (or candidate) hypotheses list serves to begin the construction of a tree.

Step I. A new hypothesis of level 1l  is created from a given hypothesis at

level l by incrementing preference indices one at a time; the cycle is run only from

CP to BP. When a new hypothesis of level 1l  is created, we remember its ‗creation

point‘.

Step II. On this step we check whether the new hypothesis is consequence of

any of the hypothesis out of the candidate hypotheses list. If it is consequence of

some of the candidate hypothesis, we discard it and go back to Step I. Otherwise

continue with the next step.

Step III. If the checked hypothesis is not consequence of any of the candidate

hypotheses, we continue with the feasibility check. If the hypothesis is feasible, it is

included in the candidate hypotheses list and then we return to step I.

Step IV. If the checked hypothesis is not feasible, we examine the place,

where the repeated measurement occurs and remember it as a ‗breaking point.‘ After

that, we include it in the list of non-feasible hypotheses for subsequent processing.

Step V. We take the subsequent hypothesis from the unfeasible hypotheses list

and return to Step 1. If all hypotheses from the unfeasible hypotheses list are already

used and the list is empty, we say that we have found the next-best hypotheses and the

return to Step 0.

As in the previous case, the algorithm terminates when the list of the first K-best

hypotheses fills up.

There is a sound rationale for some extensions in the proposed algorithm. Starting

hypotheses generation from index CP, we avoid redundant steps of the algorithm in

 Ljudmil Bojilov 137

two directions: a) preventing hypotheses duplication, and so, saving processor‘s time

and memory storage, especially for the unfeasible hypotheses list, and b) obviating

the checking whether the hypothesis is consequence of any hypothesis out of the

unfeasible hypotheses list. This list is much longer than the feasible hypotheses list

and, thus, its checking is one of the most time-consuming parts of the algorithm.

The second issue is the ‗breaking point.‘ When the cycle of hypotheses generation is

stopped at BP, we truncate significant parts of the hypotheses‘ tree and so achieve

savings of processor time and memory storage. It is important to notice that this

second extension is effective only in combination with the first one. Finally, in our

extensions feasibility checking and consequence checking are rearranged. The merits

are that non-feasibility is not yet a reason to discard a hypothesis, whereas, if it is

consequence of any of the feasible hypotheses, we can readily discard it.

5. Simulation results

The program realization of NAGARAJAN algorithm, as well as the realization of its

extension has been used for numerical experiments. The first experiment includes the

example from the work of NAGARAJAN.
1
 We run this example with NAGARAJAN's

algorithm for proving the correct program realization. The results from the

experiment fully coincide with the results in the original paper. Then, we run the

same example with the extended algorithm. If we accept the following abbreviations:

GH - number of Generated Hypotheses, HCF - number of Hypotheses Checked for

Feasibility, NAG - NAGarajn's algorithm, EXT - EXTended algorithm, T/M -

number of Targets/ Measurements, the experimental results may be presented in

Table 5.

Table 5: Comparison of the two algorithms on the cited example 1

 NAG EXT

GH 90 18

HCF 32 8

Even in such a simple case with 4 targets and 8 measurements in the cluster the

advantage of the extended algorithm is obvious.

Another series of experiments have been run with 13 different scenarios with

increasing complexity. Table 6 compares created hypotheses and those hypotheses

for which feasibility checks had to be made. The 6-th and 7-th columns contain

running time in seconds for finding the first 100-best hypotheses on a 1.4GHz

AMD/XP processor. The last column contains speed advantage ratio. For the simplest

cases the running time of the extended algorithm proved to be less than the time

138 An Improved Version of a Multiple Targets Tracking Algorithm

resolution of the computer. Additionally, for the most complicated cases the running

time of the original algorithm is out of any reasonable limits; the simulations have not

been carried out in such cases. Each value in the table was obtained by averaging

over 50 independent program runs with 50 different values of random generator seed.

Of course, one and the same random number stream has been used for any one

scenario. As it can be seen from Table 6, the scenario with 8 targets and 13 or 14

measurements prove to be the practical implementation limit of Nagarajan's algorithm

(assuming radar with 10 sec. scan). In the last and most complicated scenarios (with

15 targets and more than 20 measurements) the extended algorithm reaches its limit

for practical implementation, even though the average running time for these

scenarios is less than the assumed scan duration of 10 seconds. The problem is that

for the some of experiments, i.e. the heaviest scenario, the processing time of the

algorithm exceeds 10 seconds.

Table 6: Comparison of the two algorithms performance in terms of generated and checked

hypotheses and processing time

Targets/

Measure-

ments

(T/M)

GH HCF Time

(in seconds)

Speed

advantage

ratio

 NAG EXT NAG EXT NAG EXT

6/11 1476 - 310 - 0.03 - -

7/12 5547 - 1117 - 0.355 - -

8/13 27211 - 6291 - 4.81 - -

8/14 45550 2913 12650 1760 9.42 0.03 314

9/15 104168 6586 31788 3955 30.83 0.112 275

10/16 190536 15320 72226 10014 67.43 0.327 206

11/17 306024 22724 126458 14688 117.14 0.562 208

12/18 576424 39466 236837 28406 211.75 1.082 196

13/19 - 48627 - 35071 - 1.833 -

13/20 - 65536 - 48103 - 2.296 -

14/21 - 76560 - 57167 - 3.425 -

15/22 - 103787 - 72405 - 5.278 -

15/25 - 133526 - 103478 - 6.843 -

 Ljudmil Bojilov 139

Through an additional experiment we reveal an interesting and very useful feature of

the presented algorithm. We have tested the dependence of the processing time on

number of first K-best hypotheses with 14T/21M scenario (Table 6). Surprisingly, the

experiment exhibits very week dependence of the running time on the number of first

best hypotheses found (Table 7).

The explanation of this result is straightforward: for the main part of its work the

algorithm determines the first best hypothesis. At that time, the list of candidate

hypotheses is full and for finding any subsequent hypothesis only a few additional

operations have to be performed. This feature makes the presented algorithm a good

alternative to the well-known algorithms, proposed recently, for finding the first K-

best hypotheses, directed for use in the framework of the MHT approach.

Table 7: Processing time (in seconds) for finding different number of first K-best hypotheses

Rand-

Seed

values

Number of the first K-best hypotheses found

1

100

T
T

 1 10 20 50 100

13 2.03 2.09 2.09 2.14 2.42 1.19

15 5.5 5.5 5.55 5.76 6.37 1.16

17 1.48 1.53 1.59 1.92 2.69 1.82

25 3.13 3.13 3.18 3.24 3.57 1.14

27 2.03 2.09 2.14 2.26 2.58 1.27

33 1.82 1.82 1.87 2.19 2.86 1.57

35 2.2 2.2 2.25 2.8 2.91 1.32

53 2.74 2.75 2.76 2.81 2.91 1.06

55 3.42 3.51 3.52 3.68 4.12 1.20

65 5.06 5.1 5.11 5.28 5.54 1.09

Conclusion

This paper presented an improved version of our extension of NAGARAJAN‘s

algorithm.
 1
 Defining two points in the hypotheses generation cycle—‗creation point‘

and ‗breaking point‘—a considerable reduction of hypotheses‘ tree has been

achieved. By rearranging feasibility checking and consequence checking we attain

additional pruning of this tree. As combined result of the improvements, the time

necessary to implement the presented algorithm has been reduced by more than two

140 An Improved Version of a Multiple Targets Tracking Algorithm

orders of magnitude compared to NAGARAJAN‘s algorithm. In addition, taking into

account the week dependence of the processing time on the number of the best

hypotheses found, it can be inferred that the presented algorithm can be successfully

implemented besides other algorithms finding the first K-best hypotheses in

implementing multiple targets tracking.

Acknowledgment

The work on this paper was supported by the Center of Excellence BIS21 under

Grant ICA1-2000-70016.

Notes:

1. V. Nagarajan, M.R. Chidambara, and R.N. Sharma, ―Combinatorial Problem in

Multitarget Tracking - A Comprehensive Solution,‖ IEE Proceedings 134, 1 (1987): 113-

118.

2. V. Nagarajan, M.R. Chidambara, and R.N. Sharma, ―New Approach to Improved

Detection and Tracking Performance in Track-While-Scan Radars, Part2: Detection,

Track Initiation and Association,‖ IEE Proceedings 134, 1 (1987): 93-98.

3. Donald B. Reid, ―An Algorithm for Tracking Multiple Targets,‖ IEEE Transactions on

Automatic Control vol. AC-24, 6 (1979): 843-854.

4. Ljudmil Bojilov, ―An Extension of an Algorithm for Multiple Hypotheses Tracking,‖

Comptes rendus del’Academie Bulgare de Sciences 5, 5 (1997): 45-48.

5. Katta G. Murty, ―An algorithm for Ranking All the Assignments in Order of Increasing

Cost,‖ Operational Research 16 (1968): 682-687.

6. Roy Danchick and G. E. Newnam, ―A Fast Method for Finding Exact N-Best Hypotheses

for Multitarget Tracking,‖ IEEE Transactions on Aerospace and Electronic Systems 29, 2

(1993): 555-560.

7. Matt L. Miller, Harold S. Stone, and Ingemar J. Cox, ―Optimizing Murty‘s Ranked

Assignment Method,‖ IEEE Transactions on Aerospace and Electronic Systems 33, 3

(1997): 851-862.

LJUDMIL VLADIMIROV BOJILOV is researcher in Multisensor Multitarget Tracking and

Data Fusion at the Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences,

Sofia, since 1989. He received a M.Sc. degree in Nuclear physics from the Sofia University in

1970 and a Ph.D. degree in Electronic circuits optimization from the Technical University of

Sofia in 1991. E-mail: bojilov@bas.bg.

	1. Introduction
	2. Problem formulation
	3. Nagarajan's algorithm
	4. Extended algorithm
	5. Simulation results
	Conclusion
	Acknowledgment
	Notes

