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1. Introduction

Consider the problem of maneuvering target tracking within the framework of the fa-
miliar time invariant linear dynamic system �

���� � ��� ���� � �� (1)

���� � ����� � ����� 	 � �
 �
 �
 � � � (2)

where �� � �
�� denotes the target state with transition matrix � , �� � ��� is the

control input with transition matrix �, �� � ��� is the measurement with measure-
ment matrix � , and �� � ��� 
 �� � ��� denote respectively the process noise and
measurement errors which are assumed independent Gaussian white noises with zero
means and covariances�� and
�.

The classical input estimation (IE) � assumes that the unknown control input is con-
stant, i.e. if the maneuver has started at time 	, then

�� �

�
� for � � �
 �
 � � � 
 	 � �
� for � � 	
 � � � 
 	 �� � �


(3)

where� denotes the detection window length. This assumption allows to use the least
squares (LS) method for parameter estimation to obtain an estimate of the input � over
the interval �	
 	 ��� 
 based on the information contained in the innovations of the
Kalman filter assuming zero-input in the interval ��
 	 ��� �

In order to relax this restrictive and unrealistic assumption it was suggested � to repre-
sent the unknown input �� as a linear combination of time functions, viz.

�� �

��
���

��������
 (4)

where ������ are known scalar functions of time and � � are unknown constant vector
coefficients. For the so defined “non-constant” input the LS estimation technique has
been applied and a thorough algorithm derivation has been performed. �
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Apparently, if we consider the input transition matrix � in ��� as time invariant then
the presentation of the input �	� is more general than that of the constant input � � �

� in (3). On the other hand, however, if we consider the overall unknown input
� � ���
 ��
 � � � 
 ���, it is in fact constant and the known time functions � �����
 � �
�
 � � � 
 � influence this input as transition coefficients (in the same manner as the input
transition matrix � does). That is why it is more natural that these coefficients be at-
tributed to the input transition (coefficient) matrix rather than to the input itself. This
underlying reason has led us to the following two observations.

� The generalized IE model ��� with �	� is a particular case of the constant input
model

���� � ��� ����� �� (5)

with time-varying input transition matrix ��� Indeed, if we set

� �
�
��� � � � �

�

�

�
�

and ��
� � �������� � ������� � � � � � �������
 (6)

then ��� with �	� can be recast as

���� � ���� ��
�
��� �� � (7)

That is, � stands for the unknown constant input and ��
� for the known (time-

varying) input transition matrix. Of course ��� comprises ��� and is not restricted
to the particular choice of �� as ��

��

� The classical IE for constant input is valid for time-varying systems, and in
particular for ��� (respectively ���).

These observations imply that the GIE of � is a particular case of the classical IE with
time-varying input transition matrix �� (if we set �� � ��

�� . Next, we describe in
more details the IE for time-varying systems and show how the GIE can be obtained
from it.

2. IE for Time-Varying Systems

Although the IE method of Chan, Hu and Plant,� has been traditionally treated in time
invariant system setting, it is valid for time-varying systems as well and no additional
difficulties appear in this consideration. We summarize the basic IE method with ref-
erence to the target model ���.

The optimal Kalman filter (KF) for the system ���, ���
 where �� may be also time-
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varying, is �


���� � �� ���������
�� � �� ����������� ��������� (8)

���� � �� ������� ������
�

� ���� (9)

���� � ������
�

� �����
� �� ������

�

� �����
� �
���


��
� (10)

Let the assumption ��� holds and denote by 
��� and 
�� the estimates of the hypothetical
Kalman filter with the correct input �� of ���, and the real KF, running with the zero-
input model �� � �
 � � 	
 � � � 
 	 � � � �, respectively. Their residuals, defined
respectively as

���� � �� ��
��� 
 ��� � �� ��
�� 
 � � �
 �
 � � � (11)

satisfy

����� � ������� ������
 � � �
 �
 � � � 
 � 
 (12)

where

���� �

��
���

����
���

�� ����������� �� �������������� (13)

It is known that
�
������

�
������ 			�


is a white noise sequence with ������ � � ��
 �����,

where the covariance ���� � ������
��
���.� Thus according to (12) the residu-

als of the real (zero-input) KF provide noisy measurements of the unknown input, and
the best linear unbiased estimate (BLUE) of � can be straightforwardly obtained by
means of the LS method for this system.�

Specifically, the system ���� can be recast in the “batch form”

�� � ��� ���
 (14)

where stacked vectors and matrices are denoted as follows

�� �
�
������ � � � �����


�
�
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�
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�

� � � �����
 �
�
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��� �
�
������� � � � ������


�
�

(15)

and ��� � � ��
	� for 	 �block-diag
�
����
 � � � 
 ���


�
. Then the BLUE of

� which minimizes the normalized error


����� � ����	�� ��� =
�
�� ���

	�

	��
�
�� ���

	
(16)
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is


� � ���	�� �� with covariance � �


��	���

�
��

(17)

The minimal normalized error is given by
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�� �
�
�� ��
�
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�
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�

	�� �� ��
���
�� (18)

with

�
���
�� � 
�
�

���
� �
�
��	�� ��

	
�

�
�
��	�� ��

	
(19)

and �
���
�� is ���� distributed, provided the true input � is zero.�

Thus, the first stage of the common IE method – estimation of the input is performed
via ����. The second stage – maneuver detection – realizes the significance test �

�
�� � � (20)

through ����, where � is chosen for a given �	
. The third stage of the IE algorithm –
estimate correction – is performed in case of detecting a maneuver according to


����
 � 
���
 � ���
 
�� 
� �
correction term

(21)

� �
��
 � ���
 � ���
��

�

��
� 
� �
uncertainty increase

(22)

In the above, we very briefly recalled the known IE method with the sole difference of
considering the generic time-varying target model.

3. GIE as a Corollary of IE

Now that the IE is available one can obtain the GIE algorithm of � (specifically, the
results presented in sections III and IV therein) as a corollary of the above given com-
mon IE. Although it should be apparent from the two remarks made in the Introduction
we illustrate some details.

Consider the problem as formulated by Lee and Tahk . � Let us set for this problem �

and��
� as in ��� and substitute�� with��

� and �with � throughout in the Eqns �����
���� of the IE.

After some routine formulae manipulations the following key intermediate relations
can be subsequently obtained
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where all quantities� ���
���
 ����
 �

�
���
 �

�
���
  

���
���, �
 � are the same as defined

by Lee and Tahk.�

Consider now the IE algorithm. Firstly, the error ���� is


����� �

�

���

������ ��������
�

������ ������ �������� (31)

and after the substitution of ��� with ��
��, in view of ����, it transforms to the per-

formance index !�	
�� defined in� through the identity� �
�

����� � !�	
�� (as in

Eqn. (12) of �). Secondly, the IE equation ���� after the substitutions ����, ���� leads
to the basic GIE equation (20) of �, since

��	�� �� � � and ���
� ��	��� ��� (32)
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Further, in view of ����, Lema 1, Lema 2, and the maneuver detector ((28) of �) imme-
diately follow from ����, ����, and ���� respectively. Finally, ���� and ���� yield the
correction equations (30) and (31) of �, respectively, that can be seen by accounting for
��	�.

Thus we proved that the GIE algorithm of � can be obtained from the common IE
algorithm applied to the particular choice of�� as ��

�, and � as ��

4. Conclusion

More insight has been given to the problem of input estimation. It has been shown that
the so called generalized input estimation can be interpreted as a particular case of the
conventional input estimation with constant input and time-varying transition matrix
of the input. The latter setting, however, is more general than that of the generalized
input estimation. In practice, it enables designing models with various “non-constant”
inputs to be done through the design of the input transition matrix.
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