
INFORMATION & SECURITY. An International Journal, Vol. 9, 2002, 93-106.

3

 I&S

OBJECT-ORIENTED ENVIRONMENT FOR

ASSESSING TRACKING ALGORITHMS

Emanuil DJERASSI and Pavlina KONSTANTINOVA

1. Introduction

One way to alleviate the complex problem of designing, assessing, and implementing

tracking algorithms is to provide the designer with an environment facilitating the

creation of various test scenarios, assisting the implementation of algorithms, and

evaluating their performance. Such an environment is a complex software program,

which could be simplified by using object-oriented design and programming. The

overall program organization can be improved by unifying data and functions that

operate on the data.

Both users and designers are interested in assessing and comparing the numerous

target tracking methods and algorithms developed in recent years. Usually, for this

purpose a dynamic situation is modeled by simulating signals from moving targets

and false alarms. On the base of these signals, the target tracking algorithms initiate

and estimate target tracks. This task is complex because of the uncertainty of the

dynamic situation and the explosive increase of the computational load corresponding

to the number of targets, typical for most tracking algorithms. It often happens that

new algorithms differ only slightly from those already programmed and tested. Also,

it is sometimes necessary to add new properties to the dynamic situation. These

processes can be alleviated using the methods of the Object-Oriented Programming

(OOP), creating a set of classes that implement the basic data structures and routines

used in the simulation environment.

2. Problem formulation

The environment consists of four main parts, organized in the hierarchy presented on

Figure 1.

94 Object Oriented Environment for Assessing Tracking Algorithms

The Organization Part allows the user to choose a tracking algorithm and to control

the mode of its implementation. Using the polymorphism, the user needs only to

create or change a virtual tracking function and then to define an object of its class.

This part organizes two modes of work: single and Monte Carlo mode.

In single mode the following steps are performed:

 Simulation of the dynamic situation;

 Tracking algorithm implementation (data processing);

 Result visualization.

These steps are repeated on each scan.

The Monte Carlo mode consists of two steps:

 Accumulating statistical data by iteratively performing the first two steps of

the single mode;

 Comparison of result and visualization.

The Simulation Part provides methods for simulating target movements, environment

characteristics and sensor parameters.

The Data Processing part contains specific tracking algorithms, programmed by the

user.

The Vector-Matrix Computation part is an auxiliary part, providing a variety of

classes and methods for matrix computations, which are widely used in target

tracking algorithms.

Organization

Simulation

Data Processing
Target Tracking

Vector-Matrix Computations

Figure 1: Components of the software environment

 Emanuil Djerassi and Pavlina Konstantinova 95

3. Description of the classes

3.1. Classes for program organization

The multiple parameters characterizing a dynamic situation can be appropriately

presented in a class Scenario and the flags controlling different modes and their

parameters – in a class Control. The parameters for MonteCarlo analysis and the

functions for MonteCarlo mode implementation are included in class MonteCarlo.

These three classes are parents of an abstract class TrackingAlg. The objects of class

TrackingAlg have direct access to multiple parameters and flags. On the other hand,

the class TrackingAlg has three pure virtual functions: Tracking, ShowScenario and

ShowResult. The particular tracking algorithms, as derived from class TrackingAlg,

must define these pure virtual functions. Thus, the program code of the main part of

the program for all tracking algorithms will be the same. Figure 2 shows the hierarchy

of these classes. New classes could be added on the place of the dashed line.

// class TrackingAlg- abstract class with pure virtual functions
 class TrackingAlg: class SCENARIO, class CONTROL, class

MonteCarlo

 { public:

 virtual void Tracking();)=0;

 virtual void ShowScenario()=0;
 virtual void ShowResult()=0;

 };

 class JPDAF: public TrackingAlg

 { public:

 virtual void Tracking();

 virtual void ShowScenario();

 virtual void ShowResult();

 };

 class NN: public TrackingAlg

 { public:
 virtual void Tracking();

 virtual void ShowScenario();

 virtual void ShowResult();

 };

In this case, the links between member-functions and objects are of the type “late

binding,” i.e., on run time. Depending on the particular algorithm, the pointer

FilterObjPtr will be initialized by the address of the object from the particular class.

For example, the source code for two algorithms JPDAF and NN is:

if (TypeOfProcessing==1) FilterObjPtr = new JPDAF;

if (TypeOfProcessing==2) FilterObjPtr = new NN;

96 Object Oriented Environment for Assessing Tracking Algorithms

Similarly, new classes can be introduced for newly developed algorithms. The source

code of the main program in single mode is:

switch (FlagStage)

 { case 1:

 FilterObjPtr->ShowScenario();

 FilterObjPtr->Tracking();

 break;

 case 2:

 FilterObjPtr->ShowResult();

 break;

 default: break;

 } // end of switch

The source code of the main program in MonteCarlo analysis mode is

FilterObjPtr->MonteCarloRun();

And because in class MonteCarlo the function Tracking is declared as virtual in run-

time, the tracking function corresponding to the chosen algorithm will be selected.

This is an example of polymorphism, as the same code implements different methods

according to the type of FilterObjPtr. Depending on the work stage, the methods

ShowScenario and the tracking algorithm Tracking or the method ShowResult are

implemented.

Thus, the addition of a new algorithm is reduced to defining a new class derived from

the abstract class TrackingAlg and defining its particular virtual methods Tracking,

ShowScenario and ShowResult. The main part of the program can remain unchanged.

class

SCENARIO

class

CONTROL class

MONTE CARLO

abstract class

TrackingAlg

class

NN

class

JPDAF
- - - -

-

Figure 2: Class hierarchy

 Emanuil Djerassi and Pavlina Konstantinova 97

3.2. Classes for simulation

The data defining some specific dynamic situation (scenario) is initially entered from

a file. Each simulated target requires data on initial coordinates, velocity and

movement direction, and the maneuvering targets need also information regarding

initial and final times of the maneuver, acceleration during the maneuver, etc. Based

on the data for each sensor observation, current coordinates are computed and stored

in order to check later the measures of performance of the tracking algorithm. It is

useful to define a class ClsTarget unifying all that data for a target and the functions

dealing with it.
5,6

 The basic behavior characteristics of a target moving according to

specific rule are implemented through the class method MoveToNextPosition. In

spite of the fact that the method uses multiple data for each object, it is not necessary

to write them because the method has direct access to all the data for the object. The

other two methods ReadTargetData and CoordInitializing are used at the beginning

for target data initialization.

The description of this class is:

 class ClsTarget // Information about target

{ int Label1 ;

 int Type1;

 float Xi,Yi; // Initial Coordinates

 float WI ; // Current Velocity

 float PSIi ; // Initial Velocity

 float Azi ; // Initial Heading

 float X,Y,Z; // Current Cartesian coordinates

 float DDot,D,Azimuth,Epsilon; // Current Polar coordinates

 int InitialScan;

 int NTrSegments;

 public: // Methods for the class

 void ReadTargetData(FILE *FileIn);

 void CoordInitializing();

 void MoveToNextPosition(); // friend functions, which use Targets’ data

 friend void DefineDetectedTargets(Float Pd,

int & NumberOfDetectedTargets, IntArrTarg

DetectedTargets);

 friend int DataPreparationForCurrentScan();

 friend float RSE(int itr, int jr) ;

 friend class ClsMeasurement;

} ; // end of class ClsTarget

98 Object Oriented Environment for Assessing Tracking Algorithms

Another essential group of data describes the simulated measurements or the so-

called “raw data.” The raw data is calculated on the base of the data for the moving

targets from the objects of the class ClsTarget. For this data it is useful to define a

class ClsMeasurement. The function DataPreparationForCurrentScan is declared as

a friend function for both classes - ClsMeasurement and ClsTarget. In this function,

the measurements “received” on the current scan are computed. According to the

specific sensor parameters, the errors of the measurements are simulated. According

to the probability to detect correctly, the number of detected targets is defined. The

method Noising of the class ClsMeasurement uses the data of the detected target to

generate the corresponding measurement. The description of this class follows:

class ClsMeasurement

{ private:

 int Label1;

 float X,Y,Z;

 float Range, Azimuth,

 float Dopler,Elevation;

 int Busy;

 public:

 void Noising(ClsTarget & ob);

 friend int DataPreparationForCurrentScan();

};

3.3. Classes for tracking algorithms

3.3.1 Theoretical background

In general, a track is a set of measurements from the same target at different times.

However, in most tracking algorithms the track is approximated for each time by a

difference equation in the form:
3

)()()()()1(kukGkxkFkx  (1a)

where)(kx is a n-dimensional target state vector at time k , which consists of the

quantities to be estimated, and F is a transition matrix, G is a control matrix, and u

is a control vector.)1(kx is the prediction of the state vector for time)1(k .

The measurement vector received from the sensor is:

)()(kHxkz  (1b)

Because of the measurement errors and false alarms, the real state vector x is never

known. Instead, we have to work with its estimation x̂ . The process of estimating is

 Emanuil Djerassi and Pavlina Konstantinova 99

usually called filtering, and the correspondent algorithms are called filters.

Nowadays, the common filters used for this purpose are based on the Kalman filter.

3.3.1.1. Linear Kalman filter

When equations (1a) and (1b) are linear, the linear Kalman filter is used. The basic

form of the this filter is:

)()()|(ˆ)()|1(ˆ kukGkkxkFkkx  (2a)

)|1(ˆ)1()|1(ˆ kkxkHkkz  (2b)

)|1(ˆ)1()1(kkzkzk  (2c)

)()'()|()()|1(kQkFkkPkFkkP  (2d)

)()'1()|1()1()1(kRkHkkPkHkS  (2e)

 1)1()'1()|1()1( kSkHkkPkW (2f)

)1()1()1|1(ˆ)1|1(ˆ  kkWkkxkkx  (2g)

)'1()1()1()|1()1|1( kWkSkWkkPkkP (2h)

where x̂ is the estimation of the target state vector, z is the measurement vector,

H is the measurement matrix, W is the gain matrix, S is the innovation covariance

matrix, Q is the noise covariance matrix, R is the measurement covariance matrix,

 is the innovation vector, and P is the covariance matrix.

3.3.1.2 Nonlinear (Extended) Kalman filter

When equations (1a) and/or (1b) are nonlinear, the Extended Kalman Filter is used.

Its equations are the same as the equations of the Linear Kalman Filter (2a-2h), but

the matrices F(k) and H(k) are Jacobians, based on the first order Taylor expansion of

the nonlinear functions (1a) and (1b) respectively. Hence, the nonlinear filter

estimation can be reduced to a linear filter estimation after the Jacobians are

calculated.

3.3.1.3 Probabilistic Data Association (PDA) filter

When the observations from a single target are mixed with clutter, the Probabilistic

Data Association filter is applied instead of the classic Kalman filter.
4
 It is also called

“all neighbors method” because the updated estimate for a track contains

contributions from all N observations within the gate of track i . The probability of

the hypothesis),...2,1(NjH j  that the observation j is a valid return for the

track i is proportional to the likelihood function ijg :

100 Object Oriented Environment for Assessing Tracking Algorithms

 

,
2 2

2

2

i

M

d

ij

S

e
g

ij





 (3)

where iji
T
ijij Sd  12  , (ij is measurement residual for track i and measurement j

according to (2c)).

Then

 NjgPp ijD
N

ij ,...,2,1,1'   (4)

where  is extraneous return density, DP is detection probability.

The probabilities (ijp) associated with the N+1 hypotheses (that can be formed) are

computed through the normalization equation:





N

l

il

ij

ij

p

p
p

0

'

'

 (5)

The residual for use in the Kalman Filter update equation is a weighted sum of the

residuals associated with the N observations:

 



N

j

ijiji kypky
1

)(~)(~ , (6)

where

)1|(ˆ)()( kkxHkyky ijij

)(ky j = observation j received at scan k .

The covariance P is updated according to the equations:

)()|()|(kdPkkPkkP o  (7)

where

)|()1()1|()|(*
00 kkPpkkPpkkP ii

o 

)(~~~~)()(
1

kWyyyypkWkdP TT
ii

N

j

T
ijijij














 



and

  )1|()()|(*  kkPHkWIkkP .

3.3.2. Description of the classes for tracking algorithms

Equations (2) and the data participating in them as basis of the structure of classes

that describe tracks. At the root of the hierarchy is an abstract class containing

 Emanuil Djerassi and Pavlina Konstantinova 101

all the vectors and matrices from (2), the method KFiltering, implementing the

equations, and some virtual methods for track initiation and nonlinear filter

calculations. Over it a chain of descendent classes is created, including Linear

Kalman Filter, Extended Kalman Filter and Probabilistic Data Association Filter.

3.3.2.1 Abstract Class for Kalman Filter

class ClsAKFTrack

{ protected:

 int Label1;

 static int Nsize; // state vector size

 static int Msize; / measurement vector size

 static Matrix Q; // noise covariance matrix

 static Matrix R; // measurement covariance matrix

 static Matrix G; // control matrix

 static Vector U; // control vector

 Matrix F; // transition matrix

 Matrix H; // measurement matrix

 Vector X; // object state vector

 Matrix P; // covariance matrix

 Matrix S; // innovation covariance matrix

 Vector ZPrediction; // measurement prediction vector

 Vector Zmeasurement; // measurement vector

 public:

 virtual void

 CreateModel(float * Sigma, float Tscan)=0;

 virtual int CheckGating(Vector Zmeasurement)=0;

 virtual void InitTrack();

 virtual void DefineH(){}; // specific for nonlinear H

 virtual void DefineF(){}; // specific for nonlinear F

 virtual void MeasurementPrediction();

 virtual void Innovation()=0;

 virtual void Covariance Update();

 void KFiltering();

};

It should be noted that the data for Q, R, G and U is declared static because as data

for the class (not for the objects of the class) it is the same for all objects of that

class.
5,7

The method KFiltering consists of the following steps (some of them are

implemented by methods):

 DefineF – calculates the Jacobian of F in the case of Extended Kalman

Filter; for a Linear Kalman Filter it does nothing.

 State Prediction - Implements Equation (2a).

102 Object Oriented Environment for Assessing Tracking Algorithms

 Covariance Prediction - Implements Equation (2d)

 DefineH - calculates the Jacobian of H in the case of Extended Kalman

Filter; for a Linear Kalman Filter it does nothing.

 MeasurementPrediction – For linear case implements Equation (2b).

This method is declared virtual. For nonlinear case it is defined according to

the used measurement and state vectors.

 Innovation – Implements Equation (2c). In some specific cases as PDAF

this method is defined to calculate combined innovation according to the

used algorithm - equation (6).

 Filter Gain - Implements Equations (2e), (2f).

 State Update - Implements Equation (2g).

 Covariance Update – Implements Equations (2h). In the case of PDAF

this method is defined to implement equation (7).

3.3.2.2 Linear Kalman Filter

The declaration of the Linear Kalman Filter class is:

class ClsLKFTrack : public ClsAKFTrack

{ public:

 virtual void CreateModel(float * Sigma, float Tscan);

 virtual void InitTrack();

 virtual void DefineH(){};
 virtual void DefineF(){};

 virtual void MeasurementPrediction();

 virtual int CheckGating(Vector Zmeasurement);

 virtual void Innovation();

 virtual void CovarianceUpdate();

};

This class inherits the data and the methods of the abstract class and implements the

virtual functions. The method MeasurementPrediction calculates (2b),

Innovation calculates (2c) and CovarianceUpdate calculates (2h). The

function CreateModel should be executed only once to set the matrices Q, R, G

and the vector U. Its parameters are Sigma – process noise, and Tscan - the scan

period. This class is not abstract and can be used for creating objects.

3.3.2.3 Nonlinear Kalman Filter

The declaration of the Nonlinear Kalman Filter class is:

 Emanuil Djerassi and Pavlina Konstantinova 103

class ClsEKFTrack : public ClsLKFTrack

{ public:

 virtual void DefineH(); // specific for nonlinear H

 virtual void DefineF(); // specific for nonlinear F
 virtual void MeasurementPrediction();

 virtual int CheckGating(Vector Zmeasurement);

};

This class inherits the data of the ClsLKFTrack class and its virtual methods

DefinF and DefineH are defined to implement specific functions that calculate the

Jacobians as stated earlier.

3.3.2.4 Probabilistic Data Association (PDA) filter

A new class, derived from ClsEKFTrack, can be used for tracking targets in clutter.

The number of measurements in the gate - NumOfObsInTrackGate and an array with

the number of each observation and its score - ObsInTrackGate have to be added The

following virtual functions are defined for this particular class: CheckGating fills the

array of measurements in the gate and their scores, Innovation is defined to compute

combined innovation according to (6), CovarianceUpdate updates covariance matrix

P according to (7).

The class declaration is:

class ClsPDAFTrack : public ClsEKFTrack

{ int NumOfObsInTrackGate;

 NumAndScore ObsInTrackGate[MaxNumberOfObs];

 public:

 virtual void DefineH(); // specific for nonlinear H

 virtual void DefineF(); // specific for nonlinear F
 virtual void MeasurementPrediction();

 virtual void Innovation();

 virtual int CheckGating(Vector Zmeasurement);

 virtual void CovarianceUpdate();

};

3.4 Classes for matrix calculations

The main part of all tracking algorithms consists of repeatedly performed estimation

of target state vectors, usually called filtering.
2,3

 Each estimation consists of multiple

operations with vectors and matrices as presented in equations 2(a-h).

In order to facilitate the implementation of such algorithms, we introduce the classes

Vector and Matrix.
6
 Their methods are intended to replace some traditional functions,

104 Object Oriented Environment for Assessing Tracking Algorithms

implementing operations of the matrix algebra. The header file of the classes Vector

and Matrix is:

#include "TrackType.h"

 // for MaxSize
#ifndef VMAHOOP

 #define VMAHOOP

 class Vector; //to be used in class Matrix
 class Matrix

 { friend class Vector;

 int M,N; // matrix dimension
 float mat[MaxSize][MaxSize];

 public:

 int rows(){return(M)};

 int cols(){return(N)}

 Matrix(int m=MaxSize,int n=MaxSize) {M=m;N=n;}

 Matrix(const Matrix & from); // copy constructor
 Matrix &operator=(const Matrix & from);

 Matrix operator+(Matrix & a);

 Matrix operator-(Matrix & a);

 Matrix operator*(Matrix & a);

 float & operator()(int i,int j); //access by(row,col)

//friend functions
 friend void operator+=(Matrix &a,const Matrix &b);

 friend Matrix transp(Matrix & a); //transpose

 friend Matrix inv(Matrix & a); //inverse
 };

 class Vector

 { int N; // vector dimension
 float vec[MaxSize];

 public:

 Vector(int n=MaxSize){ N=n; };

 Vector(const Vector & from);

 Vector & operator=(Vector & from);

 Vector operator+(Vector & a);

 Vector operator-(Vector & a);

 Vector operator*(Vector & a);

 friend Vector operator*(float & a,

 Vector & b); // scalar * Vector
 float & operator[](int i){ return vec[i];};

 friend Matrix ColRowProd(const Vector& Col,

 const Vector& Row);

#endif

The classes Vector and Matrix make the writing of program source code easier. The

reduction of the number of the function parameters (the member-function has direct

 Emanuil Djerassi and Pavlina Konstantinova 105

access to the object data) from one hand, and the similarity of the source code with

writing formulas on the sheet of paper on the other hand, reduce the probability of

errors. The main advantages of using these classes is that the code becomes readable

and resembles the code written in the MATLAB language, but is more efficient,

because it is compiled instead of interpreted.

Table 1 presents the comparison of some source code written by functions and by

Vector-Matrix predefined operations.

Table 1: Comparison of source code implemented with functions and with classes

Using functions Using the Vector and Matrix classes:

StatePrediction(NSize,F,X,G,u) X=F*X+G*u

MeasurementPrediction (MSize,Nsize,Zpred,H,X) Zpred=H*X

VectorDif(MSize,DZ,Zmeas,Zpred) DZ=Zmeas-Zpred

CovariancePrediction(NSize,F,P,Q) P=F*P*transp(F)+Q

FilterGain(NSize, MSize , P, H, R , S , SInv, W) S=H*P*transp(H)+R

W=P*transp(H)*inv(S)

StateUpdate(NSize, MSize, DZ, W, X) X=X+W*DZ

CovarianceUpdate(Nsize, MSize, W, P,S) P=P-W*S*transp(W)

4. Conclusion

This paper presented one environment for assessing tracking algorithms. It uses a set

of classes that, by unifying data and functions that process them, improve the

organization of the complex programs for simulation and testing of tracking

algorithms. In the newly created algorithms, the already programmed and tested

models of the dynamic situation and the overall program organization can remain

unchanged. It is only necessary to define virtual functions for the new algorithms. The

classes proposed for vector-matrix operations facilitate the writing of the algorithm

source code.

Acknowledgment

The work on this paper was supported by the Center of Excellence BIS21 under

Grant ICA1-2000-70016.

106 Object Oriented Environment for Assessing Tracking Algorithms

Notes

1 Yaakov Bar-Shalom and William Blair, Multitarget-Multisensor Tracking: Applications

and Advances, vol. 3 (Norwood, MA: Artech House, 2000).
2 Yaakov Bar-Shalom and Xiao-Rong Li, Multitraget-Multisensor Tracking. Principles

and Techniques (YBS, 1995).
3 Samuel Blackman, Multiple-Target Tracking with Radar Applications (Norwood, MA:

Artech House, 1986).
4 Samuel Blackman and Robert Popoli, Design and Analysis of Modern Tracking Systems

(Norwood, MA: Artech House, 1999).
5 David Kruglinski, Inside Visual C++ 5.0 (Sofia: SoftPress, 1998).
6 Georgi Simov, Programming in C++ (Sofia: SIM, 1993).
7 Edward Berard, “Motivation for an Object-Oriented Approach to Software Engineering,”

<http://www.itmweb.com/essay554.htm> (27 September 2002).

EMANUIL NISIM DJERASSI is associated professor at the Central Laboratory for Parallel

Processing, Bulgarian Academy of Sciences. He received a Ph.D. degree from the Technical

University of Sofia, Bulgaria, in 1976, and M.Sc. degree from the same university in 1967. E-

mail: djerassi@bol.bg.

PAVLINA DIMITROVA KONSTANTINOVA is assistant research professor at the Central

Laboratory for Parallel Processing, Bulgarian Academy of Sciences. She received M.Sc. and

Ph.D. degrees from the Technical University of Sofia, Bulgaria, in 1967 and 1987 respectively.

E-mail: pavlina@bas.bg.

	1. Introduction
	2. Problem formulation
	3. Description of the classes
	3.1. Classes for program organization
	3.2. Classes for simulation
	3.3. Classes for tracking algorithms
	3.3.1 Theoretical background
	3.3.1.1. Linear Kalman filter
	3.3.1.2 Nonlinear (Extended) Kalman filter
	3.3.1.3 Probabilistic Data Association (PDA) filter

	3.3.2. Description of the classes for tracking algorithms
	3.3.2.1 Abstract Class for Kalman Filter
	3.3.2.2 Linear Kalman Filter
	3.3.2.3 Nonlinear Kalman Filter
	3.3.2.4 Probabilistic Data Association (PDA) filter

	3.4 Classes for matrix calculations

	4. Conclusion
	Acknowledgment
	Notes

