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1. Introduction 

One way to alleviate the complex problem of designing, assessing, and implementing 

tracking algorithms is to provide the designer with an environment facilitating the 

creation of various test scenarios, assisting the implementation of algorithms, and 

evaluating their performance. Such an environment is a complex software program, 

which could be simplified by using object-oriented design and programming. The 

overall program organization can be improved by unifying data and functions that 

operate on the data.  

Both users and designers are interested in assessing and comparing the numerous 

target tracking methods and algorithms developed in recent years. Usually, for this 

purpose a dynamic situation is modeled by simulating signals from moving targets 

and false alarms. On the base of these signals, the target tracking algorithms initiate 

and estimate target tracks. This task is complex because of the uncertainty of the 

dynamic situation and the explosive increase of the computational load corresponding 

to the number of targets, typical for most tracking algorithms. It often happens that 

new algorithms differ only slightly from those already programmed and tested. Also, 

it is sometimes necessary to add new properties to the dynamic situation. These 

processes can be alleviated using the methods of the Object-Oriented Programming 

(OOP), creating a set of classes that implement the basic data structures and routines 

used in the simulation environment. 

2. Problem formulation 

The environment consists of four main parts, organized in the hierarchy presented on 

Figure 1. 
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The Organization Part allows the user to choose a tracking algorithm and to control 

the mode of its implementation. Using the polymorphism, the user needs only to 

create or change a virtual tracking function and then to define an object of its class.  

This part organizes two modes of work: single and Monte Carlo mode. 

In single mode the following steps are performed: 

 Simulation of the dynamic situation; 

 Tracking algorithm implementation (data processing); 

 Result visualization. 

These steps are repeated on each scan. 

The Monte Carlo mode consists of two steps: 

 Accumulating statistical data by iteratively performing the first two steps of 

the single mode; 

 Comparison of result and visualization. 

The Simulation Part provides methods for simulating target movements, environment 

characteristics and sensor parameters. 

The Data Processing part contains specific tracking algorithms, programmed by the 

user. 

The Vector-Matrix Computation part is an auxiliary part, providing a variety of 

classes and methods for matrix computations, which are widely used in target 

tracking algorithms. 

 
 

Organization 

 

Simulation 

Data Processing 
Target Tracking 

Vector-Matrix Computations 
 

Figure 1: Components of the software environment 
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3. Description of the classes 

3.1. Classes for program organization 

The multiple parameters characterizing a dynamic situation can be appropriately 

presented in a class Scenario and the flags controlling different modes and their 

parameters – in a class Control. The parameters for MonteCarlo analysis and the 

functions for MonteCarlo mode implementation are included in class MonteCarlo. 

These three classes are parents of an abstract class TrackingAlg. The objects of class 

TrackingAlg have direct access to multiple parameters and flags. On the other hand, 

the class TrackingAlg has three pure virtual functions: Tracking, ShowScenario and 

ShowResult. The particular tracking algorithms, as derived from class TrackingAlg, 

must define these pure virtual functions. Thus, the program code of the main part of 

the program for all tracking algorithms will be the same. Figure 2 shows the hierarchy 

of these classes. New classes could be added on the place of the dashed line. 

// class TrackingAlg- abstract class with pure virtual functions 
 class TrackingAlg: class SCENARIO, class CONTROL, class 

MonteCarlo   

     {  public: 

        virtual void Tracking();)=0; 

        virtual void ShowScenario()=0; 
        virtual void ShowResult()=0; 

    }; 

 
      class JPDAF: public TrackingAlg    

     {  public: 

        virtual void Tracking(); 

        virtual void ShowScenario(); 

        virtual void ShowResult(); 

    }; 

 

      class NN: public TrackingAlg    

     {  public: 
        virtual void Tracking(); 

        virtual void ShowScenario(); 

        virtual void ShowResult(); 

    }; 

In this case, the links between member-functions and objects are of the type “late 

binding,” i.e., on run time. Depending on the particular algorithm, the pointer 

FilterObjPtr will be initialized by the address of the object from the particular class. 

For example, the source code for two algorithms JPDAF and NN is:  

if (TypeOfProcessing==1) FilterObjPtr = new JPDAF; 

if (TypeOfProcessing==2) FilterObjPtr = new NN; 
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Similarly, new classes can be introduced for newly developed algorithms. The source 

code of the main program in single mode is: 

switch (FlagStage) 

 {    case 1: 

           FilterObjPtr->ShowScenario(); 

           FilterObjPtr->Tracking(); 

           break; 

      case 2: 

           FilterObjPtr->ShowResult(); 

           break; 

      default: break; 

  } // end of switch  

 

The source code of the main program in MonteCarlo analysis mode is 

FilterObjPtr->MonteCarloRun(); 

And because in class MonteCarlo the function Tracking is declared as virtual in run-

time, the tracking function corresponding to the chosen algorithm will be selected. 

This is an example of polymorphism, as the same code implements different methods 

according to the type of FilterObjPtr. Depending on the work stage, the methods 

ShowScenario and the tracking algorithm Tracking or the method ShowResult are 

implemented. 

Thus, the addition of a new algorithm is reduced to defining a new class derived from 

the abstract class TrackingAlg and defining its particular virtual methods Tracking, 

ShowScenario and ShowResult. The main part of the program can remain unchanged. 

 

class 

SCENARIO 

class 

CONTROL class 

MONTE CARLO  

abstract class 

TrackingAlg 

class 

NN 

class 

JPDAF 
- - - - 

-  
 

Figure 2: Class hierarchy 
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3.2. Classes for simulation 

The data defining some specific dynamic situation (scenario) is initially entered from 

a file. Each simulated target requires data on initial coordinates, velocity and 

movement direction, and the maneuvering targets need also information regarding 

initial and final times of the maneuver, acceleration during the maneuver, etc. Based 

on the data for each sensor observation, current coordinates are computed and stored 

in order to check later the measures of performance of the tracking algorithm. It is 

useful to define a class ClsTarget unifying all that data for a target and the functions 

dealing with it.
5,6

  The basic behavior characteristics of a target moving according to 

specific rule are implemented through the class method MoveToNextPosition. In 

spite of the fact that the method uses multiple data for each object, it is not necessary 

to write them because the method has direct access to all the data for the object. The 

other two methods ReadTargetData and CoordInitializing are used at the beginning 

for target data initialization. 

The description of this class is: 

 class ClsTarget // Information about target 

{  int   Label1  ; 

   int   Type1; 

   float Xi,Yi; // Initial Coordinates  

   float WI ; // Current Velocity 

   float PSIi ; // Initial Velocity 

   float Azi ; // Initial Heading 

   float X,Y,Z; // Current Cartesian coordinates 

   float DDot,D,Azimuth,Epsilon; // Current Polar coordinates 

   int   InitialScan; 

   int  NTrSegments; 

   public: // Methods for the class 

   void ReadTargetData(FILE *FileIn); 

   void CoordInitializing(); 

   void MoveToNextPosition(); // friend functions, which use Targets’ data 

   friend void DefineDetectedTargets(Float Pd,  

int & NumberOfDetectedTargets, IntArrTarg  

DetectedTargets); 

   friend int   DataPreparationForCurrentScan(); 

   friend float RSE(int itr, int jr) ; 

   friend class ClsMeasurement; 

} ;   // end of class ClsTarget  
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Another essential group of data describes the simulated measurements or the so-

called “raw data.” The raw data is calculated on the base of the data for the moving 

targets from the objects of the class ClsTarget. For this data it is useful to define a 

class ClsMeasurement. The function DataPreparationForCurrentScan is declared as 

a friend function for both classes - ClsMeasurement and ClsTarget. In this function, 

the measurements “received” on the current scan are computed. According to the 

specific sensor parameters, the errors of the measurements are simulated. According 

to the probability to detect correctly, the number of detected targets is defined. The 

method Noising of the class ClsMeasurement uses the data of the detected target to 

generate the corresponding measurement. The description of this class follows: 

class ClsMeasurement 

{    private: 

  int  Label1; 

  float X,Y,Z; 

  float Range, Azimuth, 

  float Dopler,Elevation; 

  int  Busy; 

     public:  

  void  Noising(ClsTarget & ob);  

  friend int DataPreparationForCurrentScan(); 

}; 

3.3. Classes for tracking algorithms  

3.3.1 Theoretical background 

In general, a track is a set of measurements from the same target at different times. 

However, in most tracking algorithms the track is approximated for each time by a 

difference equation in the form:
3
 

 )()()()()1( kukGkxkFkx   (1a) 

where )(kx  is a n-dimensional target state vector at time k , which consists of the 

quantities to be estimated, and F  is a transition matrix, G  is a control matrix, and u  

is a control vector. )1( kx  is the prediction of the state vector for time )1( k . 

The measurement vector received from the sensor is: 

 )()( kHxkz   (1b) 

Because of the measurement errors and false alarms, the real state vector x  is never 

known. Instead, we have to work with its estimation x̂ . The process of estimating is 
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usually called filtering, and the correspondent algorithms are called filters. 

Nowadays, the common filters used for this purpose are based on the Kalman filter.  

3.3.1.1.  Linear  Kalman filter 

When equations (1a) and (1b) are linear, the linear Kalman filter is used. The basic 

form of the this filter is: 

 )()()|(ˆ)()|1(ˆ kukGkkxkFkkx   (2a) 

 )|1(ˆ)1()|1(ˆ kkxkHkkz   (2b) 

 )|1(ˆ)1()1( kkzkzk   (2c) 

 )()'()|()()|1( kQkFkkPkFkkP   (2d) 

 )()'1()|1()1()1( kRkHkkPkHkS   (2e) 

 1)1()'1()|1()1(  kSkHkkPkW  (2f) 

 )1()1()1|1(ˆ)1|1(ˆ  kkWkkxkkx   (2g) 

 )'1()1()1()|1()1|1(  kWkSkWkkPkkP  (2h)  

where x̂  is the estimation of the target state vector, z  is the measurement vector, 

H  is the measurement matrix, W  is the gain matrix, S  is the innovation covariance 

matrix, Q  is the noise covariance matrix, R  is the measurement covariance matrix, 

  is the innovation vector, and P  is the covariance matrix. 

3.3.1.2 Nonlinear (Extended) Kalman filter 

When equations (1a) and/or (1b) are nonlinear, the Extended Kalman Filter is used. 

Its equations are the same as the equations of the Linear Kalman Filter (2a-2h), but 

the matrices F(k) and H(k) are Jacobians, based on the first order Taylor expansion of 

the nonlinear functions (1a) and (1b) respectively. Hence, the nonlinear filter 

estimation can be reduced to a linear filter estimation after the Jacobians are 

calculated. 

3.3.1.3 Probabilistic Data Association (PDA) filter 

When the observations from a single target are mixed with clutter, the Probabilistic 

Data Association filter is applied instead of the classic Kalman filter.
4
 It is also called 

“all neighbors method” because the updated estimate for a track contains 

contributions from all N  observations within the gate of track i . The probability of 

the hypothesis ),...2,1( NjH j   that the observation j  is a valid return for the 

track i  is proportional to the likelihood function ijg : 
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Then  

 NjgPp ijD
N

ij ,...,2,1,1'    (4) 

where   is extraneous return density, DP  is detection probability. 

The probabilities ( ijp ) associated with the N+1 hypotheses (that can be formed) are 

computed through the normalization equation: 
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The residual for use in the Kalman Filter update equation is a weighted sum of the 

residuals associated with the N observations: 
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where 

)1|(ˆ)()(  kkxHkyky ijij  

)(ky j  = observation j received at scan k . 

The covariance P is updated according to the equations: 

 )()|()|( kdPkkPkkP o   (7) 

where 
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and 

   )1|()()|(*  kkPHkWIkkP . 

3.3.2. Description of the classes for tracking algorithms 

Equations (2) and the data participating in them as basis of the structure of classes 

that describe tracks. At the root of the hierarchy is an abstract class containing  
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all the vectors and matrices from (2), the method KFiltering, implementing the 

equations, and some virtual methods for track initiation and nonlinear filter 

calculations. Over it a chain of descendent classes is created, including Linear 

Kalman Filter, Extended Kalman Filter and Probabilistic Data Association Filter. 

3.3.2.1 Abstract Class for Kalman Filter 

class ClsAKFTrack 

{  protected:  

   int Label1; 

   static int Nsize; // state vector size 

   static int Msize; / measurement vector size 

   static Matrix Q; // noise covariance matrix 

   static Matrix R; // measurement covariance matrix 

   static Matrix G; // control matrix 

   static Vector U; // control vector 

   Matrix F; // transition matrix 

   Matrix H; // measurement matrix 

   Vector X; // object state vector 

   Matrix P; // covariance matrix 

   Matrix S; // innovation covariance matrix 

   Vector ZPrediction; // measurement prediction vector 

   Vector Zmeasurement; // measurement vector 

      public: 

   virtual void  

 CreateModel(float * Sigma, float Tscan)=0; 

   virtual int  CheckGating(Vector Zmeasurement)=0; 

   virtual void InitTrack(); 

   virtual void DefineH(){}; // specific for nonlinear H 

   virtual void DefineF(){}; // specific for nonlinear F 

   virtual void MeasurementPrediction(); 

   virtual void Innovation()=0; 

   virtual void Covariance Update(); 

   void KFiltering(); 

}; 

 

It should be noted that the data for Q, R, G and U is declared static because as data 

for the class (not for the objects of the class) it is the same for all objects of that 

class.
5,7

  

The method KFiltering consists of the following steps (some of them are 

implemented by methods): 

 DefineF – calculates the Jacobian of F in the case of Extended Kalman 

Filter; for a Linear Kalman Filter it does nothing.  

 State Prediction - Implements Equation (2a). 
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 Covariance Prediction - Implements Equation (2d) 

 DefineH - calculates the Jacobian of H in the case of Extended Kalman 

Filter; for a Linear Kalman Filter it does nothing. 

 MeasurementPrediction – For linear case implements Equation (2b). 

This method is declared virtual. For nonlinear case it is defined according to 

the used measurement and state vectors. 

 Innovation – Implements Equation (2c). In some specific cases as PDAF 

this method is defined to calculate combined innovation according to the 

used algorithm - equation (6).  

 Filter Gain - Implements Equations (2e), (2f). 

 State Update - Implements Equation (2g). 

 Covariance Update – Implements Equations (2h). In the case of PDAF 

this method is defined to implement equation (7). 

3.3.2.2 Linear Kalman Filter 

The declaration of the Linear Kalman Filter class is: 

 
class ClsLKFTrack : public ClsAKFTrack 

{   public: 

   virtual void CreateModel(float * Sigma, float Tscan); 

   virtual void InitTrack(); 

   virtual void DefineH(){};  
   virtual void DefineF(){};  

   virtual void MeasurementPrediction(); 

   virtual int  CheckGating(Vector Zmeasurement); 

   virtual void Innovation(); 

   virtual void CovarianceUpdate(); 

}; 

 

This class inherits the data and the methods of the abstract class and implements the 

virtual functions. The method MeasurementPrediction calculates (2b), 

Innovation calculates (2c) and CovarianceUpdate calculates (2h). The 

function CreateModel should be executed only once to set the matrices Q, R, G 

and the vector U. Its parameters are Sigma – process noise, and Tscan - the scan 

period. This class is not abstract and can be used for creating objects. 

 

3.3.2.3 Nonlinear Kalman Filter 

The declaration of the Nonlinear Kalman Filter class is: 
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class ClsEKFTrack : public ClsLKFTrack 

{   public: 

   virtual void DefineH(); // specific for nonlinear H 

   virtual void DefineF(); // specific for nonlinear F 
   virtual void MeasurementPrediction(); 

   virtual int  CheckGating(Vector Zmeasurement); 

}; 

 

This class inherits the data of the ClsLKFTrack class and its virtual methods 

DefinF and DefineH are defined to implement specific functions that calculate the 

Jacobians as stated earlier.  

3.3.2.4 Probabilistic Data Association (PDA) filter 

A new class, derived from ClsEKFTrack, can be used for tracking targets in clutter. 

The number of measurements in the gate - NumOfObsInTrackGate and an array with 

the number of each observation and its score - ObsInTrackGate have to be added The 

following virtual functions are defined for this particular class: CheckGating fills the 

array of measurements in the gate and their scores, Innovation is defined to compute 

combined innovation according to (6), CovarianceUpdate updates covariance matrix 

P according to (7).  

The class declaration is: 

class ClsPDAFTrack : public ClsEKFTrack 

{  int NumOfObsInTrackGate; 

   NumAndScore ObsInTrackGate[MaxNumberOfObs]; 

      public: 

   virtual void DefineH(); // specific for nonlinear H 

   virtual void DefineF(); // specific for nonlinear F 
   virtual void MeasurementPrediction(); 

   virtual void Innovation(); 

   virtual int  CheckGating(Vector Zmeasurement); 

   virtual void CovarianceUpdate(); 

}; 

 

3.4 Classes for matrix calculations 

The main part of all tracking algorithms consists of repeatedly performed estimation 

of target state vectors, usually called filtering.
2,3

 Each estimation consists of multiple 

operations with vectors and matrices as presented in equations 2(a-h). 

In order to facilitate the implementation of such algorithms, we introduce the classes 

Vector and Matrix.
6
 Their methods are intended to replace some traditional functions, 
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implementing operations of the matrix algebra. The header file of the classes Vector 

and Matrix is: 

#include "TrackType.h" 

  // for MaxSize 
#ifndef VMAHOOP 

  #define VMAHOOP 

   class Vector; //to be used in class Matrix 
   class Matrix 

   {  friend class Vector; 

      int M,N; // matrix dimension 
      float mat[MaxSize][MaxSize]; 

       public: 

      int rows(){return(M)}; 

      int cols(){return(N)} 

      Matrix(int m=MaxSize,int n=MaxSize) {M=m;N=n;} 

      Matrix(const Matrix & from); // copy constructor 
      Matrix &operator=(const Matrix & from); 

      Matrix  operator+(Matrix & a); 

      Matrix  operator-(Matrix & a);  

      Matrix  operator*(Matrix & a); 

      float & operator()(int i,int j); //access by(row,col) 

//friend functions 
      friend void operator+=(Matrix &a,const Matrix &b); 

      friend Matrix transp(Matrix & a);  //transpose 

      friend Matrix inv(Matrix & a); //inverse 
   }; 

  class Vector 

  { int N; //  vector dimension 
    float vec[MaxSize]; 

         public: 

    Vector( int n=MaxSize){ N=n; }; 

    Vector( const Vector & from);  

    Vector & operator=(Vector & from);  

    Vector  operator+(Vector & a);  

    Vector  operator-(Vector & a);  

    Vector  operator*(Vector & a);  

    friend  Vector operator*(float & a, 

                      Vector & b); // scalar * Vector 
    float & operator[](int i){ return vec[i];}; 

    friend Matrix ColRowProd(const Vector& Col, 

                            const Vector& Row); 

#endif 

 

The classes Vector and Matrix make the writing of program source code easier. The 

reduction of the number of the function parameters (the member-function has direct 
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access to the object data) from one hand, and the similarity of the source code with 

writing formulas on the sheet of paper on the other hand, reduce the probability of 

errors. The main advantages of using these classes is that the code becomes readable 

and resembles the code written in the MATLAB language, but is more efficient, 

because it is compiled instead of interpreted. 

Table 1 presents the comparison of some source code written by functions and by 

Vector-Matrix predefined operations.  

Table 1: Comparison of source code implemented with functions and with classes 

Using functions Using the Vector  and  Matrix classes: 

StatePrediction(NSize,F,X,G,u) X=F*X+G*u 

MeasurementPrediction (MSize,Nsize,Zpred,H,X) Zpred=H*X 

VectorDif(MSize,DZ,Zmeas,Zpred) DZ=Zmeas-Zpred 

CovariancePrediction(NSize,F,P,Q) P=F*P*transp(F)+Q 

FilterGain(NSize, MSize , P,  H, R , S , SInv, W) S=H*P*transp(H)+R 

W=P*transp(H)*inv(S) 

StateUpdate(NSize, MSize, DZ, W, X) X=X+W*DZ 

CovarianceUpdate( Nsize, MSize, W, P,S) P=P-W*S*transp(W) 

 

4. Conclusion 

This paper presented one environment for assessing tracking algorithms. It uses a set 

of classes that, by unifying data and functions that process them, improve the 

organization of the complex programs for simulation and testing of tracking 

algorithms. In the newly created algorithms, the already programmed and tested 

models of the dynamic situation and the overall program organization can remain 

unchanged. It is only necessary to define virtual functions for the new algorithms. The 

classes proposed for vector-matrix operations facilitate the writing of the algorithm 

source code. 
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