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PHASE CHANGES IN META-MODELLING USING 

THE FRACTAL DIMENSION 

James MOFFAT and Susan WITTY 

Introduction 

In this paper we are concerned with intelligent agent simulation models which can be 

used to investigate some of the new aspects of “information-age” conflict. Such 

models consist of a number of agents which interact locally in order to produce global 

emergent behaviour. One of the simplest, yet very relevant, examples of such a model 

is ISAAC, developed by the US Marine Corps Combat Development Centre under 

the “Project Albert” initiative.
1,2

 In this case, modification to the behavioural 

characteristics of the agents produces significantly different emergent behaviour in 

terms of the flow of battle and casualties suffered. Some of these behaviours can be 

surprising, and it is the aim of our work to produce a theory of such processes which 

helps to explain the types of behaviour to be expected. 

In short, understanding the behaviour of such agent based combat models is now 

becoming more important, especially as the agents gain intelligence and try to 

outsmart each other, producing potentially very complex behaviour. The principal 

variables in these models can often be separated out from the rest of the model to 

produce a meta-model which is aimed at decreasing the run-time of the original 

model while still retaining the characteristics and arriving at the same final solution as 

the original model. 

As an example, in developing a meta-model we consider the relationship between a 

key outcome of the model, a, and a set of input variables as follows: 

 

 
1 1( ,... , )ka f a a b  (1) 

 

(This is easily generalised to an arbitrary number of b’s). 
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The meta-model function can then be shown to have the property: 
3
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In some cases the function   can be further simplified using a re-normalisation 

group.
4
 This approach directs us to search for evidence of power law relationships, 

re-normalisation groups, and normalised distributions of the form  . Such 

expressions arise naturally in certain types of complex system, particularly where 

fractal structures are involved, and are referred to as “scaling” relationships, since 

they have no preferred gauge. Moffat and Passman show that there is clear evidence 

for such assumptions.
5
 In particular it turns out that the attrition rate for one side in 

such an agent-based model is correlated to the fractal dimension of the opponent.
6,7

 

This fractal dimension is a measure of the ability of a side to cluster and collaborate 

locally (to produce locally advantageous force ratios). 

As an example of how these apparently abstract ideas can give us immediate insight, 

we illustrate the problem of relating local force clustering and collaboration to the 

ability of the whole force to control an Area of Operations. Control is defined here in 

terms of the ability to prevent the opposing force or some third party from being able 

to move freely across the Area of Operations.  

Let a single unit be able to control a patch of the Area of Operations (AO) 

corresponding to a square of side length l. We assume that the force (from our 

previous discussions) is clustered fractally with fractal dimension D. It follows from 

the definition of D that if we cut up the AO into squares of side length l, then the 

number of occupied squares is 

 

 (0) DN l  (3) 

 

Thus the probability of a square being under control is given by 
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where A is the area of the AO. This is in fact a standard measure of fractal clustering, 

and hence is a good measure of the ability of the force to locally cluster and 

collaborate.
8
 

We now apply a re-normalisation group approach. By considering configurations in 

which 1,2, 3 or 4 of the cells of side l are controlled sub-regions of the square of side 

2l, and assuming that control requires a span of controlled cells stretching from side 

to side and top to bottom (to prevent flow through the region in any direction), we 

have the following relationship: 

 

 3 4(2 ) 4 (1 )p l p p p   , (5) 

 

where p(2l) is the probability of control of a square of side 2l. By continually 

increasing the area considered in this way, through re-normalisation, we have the 

general iterative relationship for the probability of control at increasing levels of span 

of the AO: 
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The stable points in this recursive relation then correspond to the intersection 

between the function 

 

 3( ) (4 3 )g x x x   (7) 

 

and the line y=x for values of x in the region between 0 and 1. In this region, g(x) is 

S – shaped and it thus has three intersections with the line y=x. Two of these are 

stable, at the extreme values 0 and 1, and there is one unstable intermediate point. 

Interacting force units should thus polarise to either a very high level of control or a 

very low level of control. Any particular clustering of the force (corresponding to a 

particular unit probability of control p) should thus give rise to a level of control 

which is attracted (by re-normalisation to larger areas of the AO) towards one of the 

two extremes.  
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Top Down Planning 

All of the above analysis indicates that Fractal Dimension is a key indicator of 

behaviour in agent based models of conflict. However, it is very much a “bottom up” 

generated emergent behaviour of the model based on inherent assumptions about 

local clustering and collaboration. In order to complete the description of a meta-

model, we also have to represent the “top down” perspective of a high level plan, and 

how this interacts with such emergent behaviour generated from below. To do this we 

have adopted the structure of Bayesian Decision Making, which assumes there is 

some overall goal or objective (or more generally a set of such objectives) to which 

the system as a whole evolves, and there is a loss of utility involved in not meeting 

such objectives. In agent based modelling terms we consider then a set of such 

desired end states or “attractors” to which the model evolves. We have an 

understanding of the set of outturns from the simulation model, and an understanding 

of the loss of utility relating to the gap between each outturn and the set of goals. We 

then consider the Expected Utility function, which combines together the distribution 

of outturn, and the associated utility. It turns out that the mathematics of such 

functions is congruent with that of elementary catastrophe surfaces, and this is 

discussed below. 

In the first of these investigations we look at the robustness of each start point in 

relation to the end points of the model run. This is in the context of many possible 

different end states or goals. The second looks at the problem with only a small 

number of end states or goals.  

Robustness Analysis with Many Possible Goals 

In a given system, it is possible to divide the parameter space into regions of 

probability of each end state. In this case the parameter is the fractal dimension of one 

of the forces at the beginning of a model run. We assume that the probability of any 

start point of fractal dimension resulting in a particular end state can be approximated 

by a scaled Normal distribution with a mean value i  and variance iV  locally. The 

probability can be written as: 
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where, for a two-dimensional problem, 0  D  2. 

However, for any start point D, there is not just a single attractor which the system 

could move to as its end state. At each fractal dimension there exist j different 
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attractors which the system could possibly choose as its end state. At this chosen 

fractal dimension D, each of these end states has a probability  jDfp j  . At any 

given fractal dimension, the sum of the probabilities of reaching all end states must be 

1, i.e.   
j

jDf 1. 

Each of the possible end states has a utility attached to it. In this way, some end states 

or attractors are considered to be “better” outcomes than others. For each fractal 

dimension value D, with respect to a single end state i, a utility function  DiU ,  is 

assumed, according to the utility of each end state based on the fractal dimension. 

To calculate the expected utility for each end state over all possible values of the 

fractal dimension D, the probability function and the utility function are multiplied 

together and integrated over all possible values of the fractal dimension: 

 

     DDiUiDfiE

D

d,)( 


  (9) 

 

This indicates the expected utility of end state i. It is a measure of how robust each of 

the end states is over the range of all possible start points. Alternatively the utility of 

the point D as a start point can be calculated as a sum over all possible end states: 

 

      
i

DiUiDfDE ,  (10) 

 

This is a measure of which fractal dimension to start from to attain the maximum 

expected utility of outcome. 

Catastrophe Theory Approach 

In the above discussion, there was no explicit decision to make. The decision was 

implicitly, “which start point do I choose based on the prior knowledge I have of the 

model?” or “what is the best end state to aim for based on my prior beliefs?” based on 

maximum expected utility. By making this decision explicit, it is possible to utilise 

Bayesian decision theory and the resultant mathematics of catastrophe theory to help 

in making the decision of which start point to choose for the model. The question we 

shall ask is: “I want my end state to be attractor i. Which is the best fractal dimension 

to choose for the start point of the force?” 
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A probability distribution for the prior belief of the best possible starting values of the 

fractal dimension can be written down to achieve the end state i.
9
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where the mean of the distribution is i  and the variance iV . The next question we 

ask is “what would happen if we move the fractal dimension by a mean amount  in 

an attempt to improve the likelihood of achieving end state i?” We assume that the 

probability of each fractal dimension giving the end state i is now given by 
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By changing the starting fractal dimension of the force, we are assuming that the 

change to the start point will increase the success in outcome in relation to end state i. 

However, if the starting point is changed from the mean i  to the value i  , the 

benefit of that starting point in terms of achieving goal or end state i is less certain 

and the variance must increase. Therefore, the variance  iV  depends on the 

decision  made (we assume) according to: 

 

     2/12 AVV ii   (13) 

 

A is a scaling factor which relates how much effect the decision  has on the variance 

of the distribution. A high value of A means that the user has very little information 

on what the effect of changing the start point will have on the outcome of the combat 

model other than the information he has on the original belief of the start point; thus a 

change will make a large increase to the variance.  

It is assumed that there exists a preferred fractal dimension denoted by 0D . This may 

be that determined by the doctrine of the force. Alternatively, it may indicate that 

there is high utility in the end state being achieved relative to some other measure, for 

example that the goal should be achieved with a high level of control of the 

battlespace. Therefore, the fractal dimension of 0D  should be the “best” fractal 
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dimension for any desired outcome or end state and the utility of any starting point 

can be written as: 
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Just as the variance of the prior belief function changes with greater decisions, the 

variance  k of the utility function can too. As the change  to the starting value of 

the fractal dimension is increased, it becomes more important that the starting value 

of the fractal dimension D is closer to the value 0D , since it is uncertain what effect 

other values of D will have on the outcome or end state. So k can be written as 

 

     2/12 
  Bk  (15) 

 

Here,  is the largest possible variance the utility function may take. B is a scaling 

factor which represents the effect of a change to the mean fractal dimension 

value i . 

If  DU  and  ,iDf  are multiplied together and integrated over all possible 

changes to the prior belief, the maximum value corresponds to that decision which 

will give the highest expected utility to that force given the aim of achieving end 

state i.  
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To find the points of maximal utility, this function must be differentiated with respect 

to the decision  and the points at which   0

iE  are the points of maximum (and 

minimum) expected utility.  

To examine these turning points, we thus plot the function  iE , the expected utility 

of the start point given the aim of achieving end state i. For different values of , , 

V, A and B, different plots are obtained. The following three figures (1, 2 and 3) show 

the behaviour and the best start point of fractal dimension for increasing values of the 

parameter A.  

 

 

 

Figure 1: Behaviour of the expected utility for increasing values of A. 

 

 

   

Figure 2: Behaviour of the expected utility for increasing values of A. 
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Figure 3: Behaviour of the expected utility for increasing values of A. 

The above three figures show that the change  with the highest utility switches 

suddenly from 0 to approximately  0D   as the A, the dependence of the 

variance of the prior belief on the decision change, increases. A value of  = 0 means 

the expected starting value of fractal dimension should be i . If  =  0Di   , this 

means that the most appropriate expected initial fractal dimension value is that of 

0D . Similar behaviour can be seen when the value of the parameter i  is increased. 

   

 

   

Figure 4: Behaviour of the expected utility for increasing values of i . 
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Figure 5: Behaviour of the expected utility for increasing values of i . 

   

 

   

Figure 6: Behaviour of the expected utility for increasing values of i . 

These plots thus show a change of phase in expected starting fractal dimension based 

on small changes to the model parameters. The solution set is restricted to either “no 

change” ( = 0) or a significant move to an expected value of 0D . If we plot the 

maxima of the expected utility function using just the mean i  and A as variables and 

keeping all other parameters constant, it is possible to build a cusp catastrophe 

surface of the maxima of the expected utility function as in Figure 7. 
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Figure 7: A cusp catastrophe surface  

The different “sheets” of the surface correspond to different “best” starting points for 

the force in terms of the fractal dimension. In the region of the fold, there is more 

than one maximum for the expected utility function and therefore, at these values of A 

and  the global maximum of the expected utility function must be taken. If the other 

parameters , V and B are varied, the cusp catastrophe becomes a higher order 

catastrophe surface in five dimensions. 

Small Number of End States 

During a single simulation combat model run, the value the fractal dimension takes 

varies slightly and throughout the run, the fractal dimension takes a range of values. 

At any point in time in the model run, the probability of the fractal dimension taking a 

particular value can be approximated by a Normal distribution centred on a mean 

value of  with a variance of V as indicated by the equation 

 

  
 








 


V

D

V
Df

2
exp

2

1 


 (17) 

 

Changing the starting value of the fractal dimension by an amount  means that the 

probability distribution for the fractal dimension throughout the model run can also 

be approximated by a Normal distribution as in Equation 18. However, in this 

analysis, the variance of the belief of the fractal dimensions the force takes during the 

model run will not increase with a change in start point. This is because it is assumed 

 

 A 
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that the small deviations to the initial fractal dimension value are always of the same 

magnitude no matter what the starting value is. Therefore, the new probability of each 

fractal dimension occurring during a model run when the start point is changed is 

written as: 
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In the previous discussion, we assumed that the number of end states or attractors in a 

system was relatively large. If the set of attractors in the system is small, it is possible 

to state at each value of the fractal dimension, what the probability of achieving each 

end state is and that end state’s utility. Each end state has a fixed distribution of utility 

over the fractal dimension and we assume this utility can be approximated as a 

mixture of Normal distributions. Assuming that there are only two possible end states, 

the utility function can be written as: 
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where 1 , 2  are the means and 
2

1 ,
2

2  the variances of each Normal distribution 

making up the mixture distribution of utilities relating to each of the end states.  

   

 

   

Figure 8: A mixture utility function 
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Figure 8 shows an example of a mixture utility function. The expected utility 

 E from each decision and so starting fractal dimension can be calculated from, as 

before, 

 

 

     

    
 

 

  

 
 

  

  





























































 












 

























 











VV
X

VV
X

dD
D

X
D

X
V

D

V

dDDUDfE

D

D

2
2

2
2

2
2

2
2

2
1

2
1

2
1

2
1

2
2

2
2

2
1

2
1

2

2
exp1

2
exp

2
exp1

2
exp

2
exp

2

1





























 (20) 

 

Maximising this function gives the “best” starting points of the fractal dimension 

relative to the prior knowledge of the model’s behaviour. It can be shown that the 

function  E  exhibits a catastrophe with a cusp point which can be determined 

analytically.
10

 The global maximum value of the expected utility function depends on 

the values of 1 , 2 , 
2

1 , 
2

2 and the relative weight, X, of the utilities. At certain 

points of these parameters, there will only be one local maximum of the expected 

utility function corresponding to one or other of the utility maxima. At others there 

will exist two local maxima, for which cases, the best starting value of the fractal 

dimension will correspond to the global maximum. The following figures show the 

effect of increasing the relative utilities of each end state. 

   

 

   

Figure 9: Goal utility – changing i  
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Figure 10: Goal utility – changing i  

   

 

   

Figure 11: Goal utility – changing i  

The fractal dimensions with greatest utility are always either 1  or 2 . Similar 

effects can be seen with changes to the values of the utility variance, 
2

1  and 
2

2 . 

Keeping 
2

2  fixed and changing 
2

1  gives the following plots. 
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Figure 12: Goal utility – changing utility variance 

   

 

   

Figure 13: Goal utility – changing utility variance 

Again, the only two points of maximum utility (either local or global) are the means 

1  or 2  in the mixture of Normal distributions making up the utility function. The 

regions of the parameter space ( 1 , 2 ,
2

1 ,
2

2 , X, V) can then be classified 

according to the starting value of the fractal dimension of the model run with the 

highest expected utility. This will produce a higher order catastrophe surface. 
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By including more than two Normal distributions in the mixture making up the utility 

function, it is possible to examine the effects of more than two end states, or end 

states which have a more complicated relationship to the starting fractal dimension of 

the force. 
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