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1. Introduction 

Tracking of manoeuvring targets is a problem of a great practical and theoretical 

interest. The real-world tracking applications meet a number of difficulties caused by 

the presence of different kinds of uncertainty due to the unknown or not precisely 

known system model and random processes’ statistics or because of their abrupt 

changes.
2-5, 9

 These problems are especially complicated in the marine navigation 

practice,
7, 14, 15, 19

 where the commonly used simple models of rectilinear or 

curvilinear target motions do not match the highly non-linear dynamics of the 

manoeuvring ship. A solution of these problems is to derive more adequate 

descriptions of the real ship dynamics and to design adaptive estimation algorithms. 

Such a solution is proposed in the paper. A new ship model is derived in Section 2 

after an analysis of the basic hydrodynamic models. The derived model is 

implemented in a new version of the Interacting Multiple Model (IMM) tracking 

algorithm - the most cost-effective multiple model algorithm for hybrid estimation.
3, 6, 

10, 11
 The proposed model and tracking algorithm are presented in Section 3 and 

evaluated in Section 4. 

2. Model identification 

Results of a study, described in 
16, 17, 18

 are summarised in this section. It should be 

noted that the high complexity of the hydrodynamic processes caused by the ship 

motion in deep and confined water and the wide variety of ship forms and sizes lead 

to various non-stochastic ship models. These models can be divided in two groups: 

precise models, topical for particular ship forms and sizes (the Sobolev,
19

 Cubic,
1
 

Quadratic
13

 and MMG
14

 models) and models with greater generality but lower 
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accuracy (the Pershitz
15

 and Nomoto
12

 models). Here, the widely used continuous-

time (CT) Pershitz model
15

 is chosen as a basic model to assure a good trade-off 

between complexity and accuracy: 
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The state vector of the considered CT model is  x X Y V , , , , ,
'

   . It includes 

the ship coordinates and heading, rate of turn, drift angle and velocity;   is the 

control rudder angle deviation. The constants 21q , 21r , 21s , 1h , 31q , 31r  and 31s  

are hydrodynamic coefficients depending on the ship geometry, most of all, and on 

the ship length L .
20

 Equations (3) and (6) illustrate the main feature of the 

considered dynamics - the non-linear dependence between the rate of turn and the 

velocity of the ship. This is the main difference between the presented model in this 

paper and other well-known simple models.
2, 5, 9

 

Very often in the available literature sources
15, 20

 this model is simplified by 

substituting the factor   with an off-line computed factor: 

311

311

2

0
2

4

rh

srhqq 



 ,  



124 Interacting Multiple Model Algorithms for Manoeuvring Ship Tracking 

where: 21313121 rqrqq  , 21313121 srsrs  . Then, the system of two first-order 

differential equations consisting of equation (4) and the modified equation (5) is 

transformed in two independent second-order differential equations, omitting the 

negligible second-order derivatives: 
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where  31215.0 rqp  
, 21313121

* rqrqq  
, 012121 hqq 

. The final CT 

model (1)-(3), (4’) and (6) is obtained by setting 0 . 

The respective discrete-time (DT) model is: 
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and k  1 2, ,; T  is the sampling interval. 
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The full coincidence between the results obtained by the CT model (1)-(6), and these 

obtained by the derived DT model (7)-(11) is demonstrated in 
17

. Model (7)-(11) is 

used for true data generation in further simulations. 

The final DT model, suitable for implementation in Kalman filter, is 

composed on the basis of the assumptions
17, 18

: 

*  It is assumed that the observed ship maneuvers with a constant rate of turn: 

 k k 1   (i.e. 0 ). 

*  The whole domain of unknown control parameters  k  is replaced by a set 

of three control parameters corresponding to the three basic kinds of ship motions: 

rectilinear motion (1 ), left and right turns (2 and 3 ): 

        1 2 3 0, , , ,
' '

U U , 

where U  denotes the preset constant rate of turn. The vector   covers all 

possible ship manoeuvres and system noises in the band  U U, . The particular 

choice of U  is made by taking into account general considerations from the marine 

practice and some important international navigation restrictions.
20

 

*  The attempt to introduce respective vector of possible ship lengths has been 

recognised in 
17

 as unsuccessful because of bad distinction of the resulting models. 

The uncertainty, concerning the ship geometry has been overcome by introducing a 

constant average ship length constl  .
17

 

So, the final version of the requested ship model takes the following general form: 

 lxfx ikki ,,1,  , i 1 2 3, , , 

where  x X Y Vk k k k k , , , ,

'
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  ikikiki TV   1,,1,  ,       (14) 
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where  
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Another model, based on the extended state vector 

 x X Y Vi k
e

i k i k i k i k i k, , , , , ,

'
, , , ,    is suggested in 

18
. The corresponding extended 

ship models ( i 1 2 3, , ) have the form: 

kikikiki sinTVXX ,1,,1,   ,     (16) 

kikikiki cosTVYY ,1,,1,   ,      (17) 

   kiikikiki TV ,1,,1,    ,    (18) 
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where   122

, 9.11


 lK iiV . It takes into account possible differences ki,  

between the unknown true value of the ship rate of turn k  and its values i  fixed 

in the IMM algorithm. The influence of i k,  on the velocity is not taken into 

account because of its insignificance. 

3. IMM algorithm for tracking of manoeuvring ship 

Models (12)-(15) and (16)-(20) are expanded in 
17

 in Taylor time-series up to first-

order terms around the estimated state vector. They are used in an Extended Kalman 

Filters (EKF) and respective IMM algorithms. The IMM algorithm based on model 

(12)-(15) is denoted as IMM-A and the proposed IMM algorithm based on model 

(16)-(20) is denoted as IMM-B. 

The measurement equation has the form: 
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where H  is the measurement matrix,  
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kw  is a white Gaussian measurement noise with covariance matrix Rk .  

For convenience, the polar measurements “range-bearing”  y rk k k ,
'

 , are 

transformed here in Cartesian ones: 

X rk k k sin , Y rk k k cos . 

So, the measurement vector acquires the new form  y X Yk k k ,
'
. Respectively, the 

covariance matrix of the measurement errors is
8
: 
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where r  and   are the standard deviations of the range and bearing angle. 

The equations of the i th
 ( i 1 2 3, , ) EKF are: 
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Here, kkix /,
ˆ  and kkix /1,

ˆ
  are the filtered estimate of the state kx  and its one-step 

prediction;  i k,  and Si k,  are the filter residual process and its covariance matrix, 

kkiP /,  is the error covariance matrix, kiK ,  is the filter gain matrix,  1  is the 

fudge factor. 

The Jacobi matrix f
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 computed based upon the model  (12)-(15) has the 

form: 
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A hard logic is introduced in both IMM algorithms to avoid undesired combination of 

the estimates 
,V k1 , 

,V k2  and 
,V k3

17
: 

 
, , ,V Vi k k 1         ( i  2 3, ); 

  ., , ,V V ifk k k 1 1 05 ,  

where ki ,  is the probability of the event: “the i th
 model is topical at time k ”, kV̂ is 

the overall estimate of the ship velocity.  

4. Performance evaluation 

The performance of both IMM algorithms is  compared by Monte Carlo simulations.
2
 

Results for 100 independent runs, each one lasting 200 scans (600s, T =3s) are given. 

The simulation parameters of the true model (7)-(11) are standard
20,17

: q21  0.331, 

r21  -0.629, s21  -0.104, h1  3.5, q31  -4.64, r31  3.88, s31  -1.019, L=99m, 

min  3o
, max  30

. The chosen initial conditions are: X 0  Y0  10000m, 

 0  45


, V0  30 m/s. Initially the ship moves rectilinearly. The applied pulse-

wise rudder angle control law is: 

 
 


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
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max , ,
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k
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51 67

0 51 67
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The true ship trajectory is presented in Fig.1. 
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Figure 1: The true ship trajectory 

Both considered IMM algorithms a use constant ship length l=69 m for each of the 

three models, control parameter U  0.0066 m1
 (360

o min ) and fudge factors 

 A   B
= 1.03. To compute the measurement error covariance matrix, it is preset: 

 r  100m,    0.3


. The initial error covariance matrices Pi ,0 , the initial mode 

probability vectors   and the transition probability matrices Pr  are chosen as 

follows: 

 P diagi
A

X Y V,0
2 2 2 2     ,   P diagi
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0 95
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.

.

.

, Pr = Pr

. . .

. .A B 


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
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







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0 6 0 2 0 2

05 05 0

05 0 05. .

. 

  X Y r  ,   0. 1


,V 10 m,   0.01 rad / m . 

The Monte Carlo simulation results are shown in Figs. 2-13. General estimation of 

the algorithms’ performance is given in Fig.2. The IMM-B algorithm possesses better 

consistency during the manoeuvring stage.  

These inferences are confirmed by results received for the mean error (ME) and the 

root mean square errors (RMSE) of the state vector
2
 (Figs.3-6 and Figs.7-10). The 
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average mode probabilities are presented in Figs.11-12. The computed ME of the 

estimated IMM-B control parameter change is given in Fig.13. 
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Figure 2: Normalized Estimation Error Squared 
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Figure 3:  X Position ME 
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Figure 4: Y  Position ME 
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Figure 5:  Heading ME 
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Figure 6: Velocity ME 
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Figure 7:  X  Position RMSE 
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Figure 8: Y Position RMSE 
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Figure 9: Heading RMSE 
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Figure 10: Velocity RMSE 
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Figure 11: Average Mode Probabilities for IMM-A 
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Figure 12: Average Mode Probabilities for IMM-B 
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Figure 13: IMM-B control parameter change ME 
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5. Conclusions 

New models adequately describing the non-linear dynamics of maneuvering ship 

motion are proposed in the paper for manoeuvring ship tracking. They are 

implemented in a standard and in newly designed IMM versions. The proposed new 

IMM uses extended state vector and model to compensate the difference between the 

fixed control parameter of the currently used IMM model and its real value. The 

performed Monte Carlo simulations show excellent model fit and estimation 

performance. 
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