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TRACKING FILTERS FOR RADAR SYSTEMS WITH 

CORRELATED MEASUREMENT NOISE  

Donka  ANGELOVA and Boryana VASSILEVA  

1. Introduction  

Most tracking filters are based on the Kalman filter equations,
1
 where the tracking 

system model presumes white process and measurement noise. In practice, the 

measurement noise may not be white. Its bandwidth may be on the order of several 

hertz. For example, target scintillation (or glint) causes the range and angle 

measurement errors to have a finite bandwidth. Another example of correlated 

measurement error is the radial velocity measurement error appearing as a result of 

radar frequency instability and target velocity fluctuations.  

When the measurement frequency is much smaller than the error bandwidth, the 

errors of successive measurements are approximately uncorrelated and can be treated 

as white noise. However, the measurement frequency of some modern radars is 

sufficiently high and the correlation cannot be ignored without tracking accuracy 

deterioration. 

A possible approach to circumvent the effect of colored noise is the target state 

augmentation technique.
1
 However, this yields a singular state covariance matrix, 

which may be ill-conditioned. A solution to the problem was suggested first by 

Bryson and Henrikson.
2
 They generated a pseudomeasurement, linear combination of 

two consecutive measurements, which is corrupted by white noise. In this 

measurement difference approach the application of the Kalman filter equations is 

straightforward. Rogers modeled colored noise as a first order Autoregressive (AR) 

process and applied the pseudomeasurement method to the    filter.
3
 But in real-

world environment the exact prior information of the AR coefficients is not known. 

Wu and Chang proposed a method to estimate the AR parameters by removing the 

state variables from the measurements.
4 

Their method and the pseudo-measurement 

approach are used in the Interacting Multiple Model (IMM) filter for maneuvering 

target tracking.
4
 Thus, significant improvement is obtained. 
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The application of the pseudomeasurement method is limited to the case where only 

position is measured. The case where both position and velocity are measured cannot 

be solved by this approach. Gazit
5
 extends the procedure suggested in [2] and 

formulates an optimal filter for tracking nonmaneuvering target without any 

restriction on the models' dimension. Using this decorrelation approach, a technique 

for tracking filters design for maneuvering targets is presented in this work. A new 

algorithm for AR parameter estimation is proposed. It is appropriate for on-line 

processing and is incorporated into the IMM filter. Two practical tasks are solved: 1) 

tracking with position measurements and 2) tracking with position and velocity 

measurements. The performances of the suggested algorithms are evaluated by Monte 

Carlo computer simulation.  

The paper is organized as follows. Section 2 concisely summarizes the measurement 

decorrelation approach proposed in [5] and marks the IMM algorithm as an effective 

estimator of maneuvering targets. Section 3 presents a new algorithm for estimation 

of AR parameters based on the true state variable removing method.
4
 The Monte 

Carlo simulation results are described in section 4. Conclusions are summarized in 

the final section. 

2. Tracking filter design 

Tracking filters have to be correctly designed to obtain best results for a specific 

practical application. This process is often a trade-off among quality, complexity and 

possibility for on-line processing. The filter design comprises the choice of a 

measurement error model, the choice of a noise decorrelation scheme and a filtering 

algorithm, as well as the selection of their a priori parameters. 

A. Measurement noise decorrelation. Consider the following model of a linear 

dynamic system for tracking with colored measurement noise
5
: 

x k x k G w k

e k e k k

( ) ( ) ( )

( ) ( ) ( )

  

  

1

1



 

   (1) 

where x k nx( )  is the target state vector, e k ne( )  is the state vector of the 

measurement error model, w k( ) and ( )k  are random noise sequences, assumed to 

be white and mutually uncorrelated with covariances W k( )  and V k( )  respectively. 

Let target position xk , velocity vk , and acceleration ak  be components of the state 

vector in one-dimensional case: x k x v ak k k
T( ) ( , , ) . The state transition matrix 

  and the noise matrix G  are determined by the target dynamics and assumed to be 
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known to the tracking filter. The measurement vector y k
ny( )  in the 

measurement model  

y k Cx k De k( ) ( ) ( )     (2) 

is a linear combination of  x k( )  and  e k( ) . The matrix C  selects the measured 

elements of x k( )  (for example, position only, or position and velocity). A state 

space partition and a reduced order dynamic model are used in [5] to construct a 

tracking filter without limitations concerning the order of the error model and 

measurement vector dimension. The author rewrites the measurement equation in the 

form: 

y k x k e ka a( ) ( ) ( )      (3) 

where x ka

ny( ) and e ka

ny( )  are the measured elements of x k( )  and 

e k( ) . Thus a partition of the state vectors is actually formed. It imposes a similar 

partition of the transition matrices, noise vectors and their covariance matrices. 

Analogous to [2] a new measurement vector is defined: 

y k y k y kr a( ) ( ) ( )  1     (4) 

where a  has dimension ( )n ny y  and corresponds to the vector ea . After 

appropriate substitutions and transformations the target and measurement equations 

are reformulated: 

x k F x k G u k w k

y k H x k k

r r r r r

r r r

( ) ( ) ( ) ( )

( ) ( ) ( )

   

 

1



   (5) 

where the deterministic input u k y kr ( ) ( )   and the new state vector x kr ( )  of 

dimension n n n nr x e y    is extended with the unmeasured elements of e k( ) . 

The form of the system matrices F G Hr, , can be found in [5]. The new process 

noise w kr ( )  and measurement noise r k( )  are now white sequences, but they are 

mutually correlated: E w j k Sr r
T

jk[ ( ) ( ) ]  . Since the matrix S  is small (its 

elements contain the 6 3  degree of the sampling interval T s 0 05. ), w kr ( )  can 

be assumed uncorrelated with r k( )  with slight degradation in performance.
7
 The 

system order n n n nr x e y    is smaller than the order of the augmented system 
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n nx e .
1
 Now the application of the Kalman filter becomes possible and, 

consequently, the IMM algorithm can be applied to the case of maneuvering target 

tracking with correlated measurement noise. 

B. Measurement error model. The measurement error e k( )  is modeled as a 

first-order AR process. In that case   is the matrix of the AR parameters and ( )k  

is a zero mean white Gaussian noise with variance E j k VT
jk[ ( ) ( ) ]   . When 

only the position of the target is measured, then the system parameters are determined 

as: 

n n x k x ky e a k k
x   1 1; ; ( ) ; ( ) ;        x x T; exp( ) , 

where   is the bandwidth of the measurement noise. x and the noise variance 

( ) 
k

x 2
 are two AR parameters which have to be estimated.  When both position and 

velocity are measured, then: 

n n x k x v ky e a k k
T

k
x

k
v T   2 2; ; ( ) ( , ) ; ( ) ( , )   ;   diag x v( , )   

and     x v
k k

x y

, , ( ) , ( )2 2
are subject to adaptive estimation. 

C. IMM state estimation algorithm.
 1

 The kinematic behavior of a maneuvering 

target can be suitably described in the terminology of the stochastic hybrid systems. 

The aim of the hybrid estimation is to assess the system state and behavior mode 

based on the sequence of the noisy measurements. Filtering algorithms in general 

consist of operating in parallel Kalman filters and Bayesian mechanism to organize 

the cooperation between the individual filters. An underlying Markov chain is 

assumed to govern the mode switching. The IMM algorithm is one of the most 

effective recent suboptimal Bayesian filters for hybrid system estimation. It provides 

the overall system state estimate ( / )  ( / ) ( )x k k x k k kj
jj

r


 
1

 and estimates its 

associated covariance matrix P k k( / )  as a weighted sum of the estimates 

 ( / )x k kj
 and its covariances P k kj ( / ) , formed by r  mode-conditional parallel 

Kalman filters. The posterior mode probabilities  j k( )  are calculated on the base of 

the likelihood of the measurement, received at the current time step.  

D. IMM tracking filter design  includes: a) selection of target motion models 

and their parameters; b) assignment of transition probabilities of the underlying 

Markov chain. The motion modes along one of the Cartesian coordinates are modeled 

by a second-order kinematic (nearly constant velocity)  model for uniform motion 

and two third-order (nearly constant acceleration) models for the maneuvers. The 

process noise standard deviations are chosen after some simulation experiments as 

follows: wr
m s1 210 /  for nonmaneuvering mode and wr

m s2 290 / , 

wr
m s2 2150 /  respectively for the two maneuvering modes corresponding to 
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different maneuver intensities. The Markovian transition probability matrix is chosen 

identical to [4] in order to compare the final results. 

3. Estimation of AR parameters 

A technique that can effectively estimate the AR parameters of the position and 

velocity measurement noises is proposed in this work. Since the measurement (3) 

contains state variables xk  and vk  the direct estimation of the ek
x

 and ek
v

 

parameters ( ( ) ( , ) )e k e ek
x

k
v T  is difficult. It will be very helpful to remove state 

variables: 

x x v T a T v v a Tk k k k k k k        1 1 1
2

1 1

1

2
, ,   (6) 

where ak  is the acceleration of the target. Let k  denotes the true target position 

( )k kx  or velocity ( )k kv . The following filtering operation is used to obtain 

a new signal uk  that does not involve k : 
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i
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  



 (7) 

where if k kx , then l  3  and if k kv , then l  2 . Thus the z-transform of  

(7) is: 

u z z e z m z m z
l

z z a z Tl l l( ) ( ) ( ) ( ), ( ) ( ( )) .   


   1
1

1

1 1 1  (8) 

Note that ek


 is an AR process. According to (1) its transfer function is: 

e z
z

z






( ) ( )

 

1

1 1
   (9) 

and u z( )  is: 
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u z
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Passing u z( )  through filter with transfer function 

F z
z l

( )
( )


 

1

1 1
,   (11) 

where 0 1  , the output 

u z
z

z z
z

m z

z

l

l l
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



 





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1
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1

1 1 1 




  (12) 

can be obtained. For nonmaneuvering ( )a ak k l  1 0  and maneuvering with 

constant acceleration ( )a ak k l  1 0  cases, the second term of the right-hand side 

of (12) is zero. If the value of   is chosen to be one, u k  is just the colored noise ek


, 

i.e. 

u uk k k
   

1    (13) 

Here an algorithm based on the Burg's method
6
 is proposed to estimate the AR 

parameters. Since ek


 is modeled as a real 1st-order AR process, this algorithm has a 

simple recursive structure: 

a a u u b b u u
a

b

N
b

k k k k k k k k k

k

k

k
e

k k k k
e
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


 

     

   


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1 1 1
2

1
2

2 2 2 2

2

1

2 1
1

, , ;

( )
( )

; ( ) ( ( ) ) ( )

 (14) 

where 0 1   is the forgetting factor and N  1 1/ ( )  is the effective 

memory. If   is large, the algorithm convergence is slow and it cannot respond to 

the change of  
 quickly. Advantage of using large   is the small estimation 

variance. On the contrary, small   will let fast algorithm convergence. In this case, 

however, the estimation variance is large. A good compromise between convergence 

rate and estimation error is achieved for   0 99. . 
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When the target acceleration is not constant ( )a ak k l  1 0  and  1 the low 

frequency components of m z( )  in (12) will be greatly amplified and uk  will be no 

longer equal to ek


. This problem can be overcome choosing  1  and using the 

range of the real ek


 values. Thus, if uk k
e2

1
29 ( )



 the previous scan estimates 

remain the same. In this way the parameter estimations are updated when 

u z
z

z z
z

l

l
( )

( )

( )( )
( )



 



 

1

1 1

1

1 1 




 .  (15) 

It is clear from (15) that larger   will give better results. However, too large values 

of   will amplify the mk


. From (8), we find that mk


 is determined by the target 

acceleration difference a ak k l 1  and sampling period T . From experience it is 

found that the estimates are almost not affected for   0 97.  if e ek k
x   and 

  0 90.  if e e
k k

v  . But the estimates are then biased. The biases of the ek
v

 

parameters estimates are significant and cannot be ignored. The unbiased estimates 

can be found using the following expressions
4
: 
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 v
 and ( ) ev 2

 are biased estimates denotations. The described AR parameter 

estimation algorithm has simple structure. Its complexity estimation includes 44 

multiplications and divisions and one square root operation for one cycle if both 

position and velocity are measured. The computational complexity of this algorithm 

is approximately one-tenth of the IMM algorithm of target tracking. 

4. Computer simulation results 

The performance of the proposed algorithm is investigated by means of simulation 

analysis. The realized Monte Carlo simulation model implements the following tasks: 

simulates the real target dynamics; generates measurements according to the accepted 

noise model; implements the algorithm of interest; performs a posterior statistical 

processing of the experimental data. 

The target motion scenario is chosen as follows. The maneuver lasts from 10 to 30 s 

with constant acceleration equal to 40 2m s/  (about 4g ). The sampling period T  is 

0 05. s . The total tracking interval is 50 s  (1000 samples). It is assumed that the 

standard deviations of measurement noises are  x

m100  and  v

m s15 / . 

During the nonmaneuvering period ( ; )1 10 31 50 s s  the coefficients are: 

 x T  exp( ) .4 8187 ;  v T  exp( ) .1 9512 . During the maneuvering period 

( )11 30 s  the coefficients are:  x T  exp( ) .10 6067 ; 

 v T  exp( ) .5 7788 . The tracker is initiated 20 s  before the formal tracking 

period. The purpose is to investigate the steady state behavior of the algorithm. One 

hundred Monte Carlo runs are carried out and the average results are shown under the 

Root Mean Square Error (RMSE) criterion. 

 The estimation errors of the correlation coefficients ( , ) x v
 and the noise 

standard deviations ( , )  x v

 are indicated by the curves on figures 1 and 2 

respectively. They show that in steady state the estimate errors of the parameters are 

quite small (less than 10 %). The results of the parameters estimation when only 

position is measured closely correspond to the ones of Wu and Chang
4
, but the 

computational complexity of their algorithm is approximately two times bigger. From 

the above results we know that the proposed algorithm can estimate the AR 

parameters effectively. 

To achieve better tracking performance, we incorporate it into the IMM filter for 

maneuvering target tracking. The filters performance is examined over the described 

motion scenario in two cases: case 1 - position only measurements and case 2 - both 

position and velocity measurements. 



98 Tracking Filters for Radar Systems with Correlated Measurement Noise  

 

0 200 400 600 800 1000 0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

samples 

E
s
ti
m

a
ti
o

n
 E

rr
o

r 
o

f 
A

lp
h
a
 

Alpha x  - 
Alpha v  -- 

 

Figure 1 

0 200 400 600 800 1000
0

5

10

15

20

25

30

samples

E
st

im
a

tio
n

 E
rr

o
r 

o
f 

S
ig

m
a

Sigmax -

Sigmav --

 

Figure 2 

The filters efficiency is evaluated according to: RMS errors, Peak Dynamic Errors 

(PDE), Correct Mode Identification (CMI). In figures 3 and 4 comparative velocity 

and acceleration RMS errors for tracking without decorrelation and with suggested 

adaptive decorrelation scheme are shown. From these figures we see that the noise 

decorrelation improves estimation accuracy, especially in the velocity and 

acceleration. In case 1 the improvement in velocity estimation is about 50 % during 

uniform motion and 30 % during maneuvering phase. For the acceleration these 

values are 60 % and 30 % respectively. The velocity measurement incorporation in 

case 2 additionally improves the estimation accuracy. In both cases, due to the 

measurement noises decorrelation, PDEs during maneuver on/off switching are 

considerably reduced. That can be seen from Table 1 as well. The evolution of the 

posterior probabilities corresponding to the three models of motion is presented on 

figure 5. It is seen that the IMM filter correctly identifies the true system mode (the 

delay in maneuver detection is about 20 sampling intervals). 
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Figure 4 
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Figure 5 
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Table 1 

Filter Noise Position 

[m] 

Velocity 

[m/s] 

Acceleration 

[m/ s2
] 

case 1 undecorrelated 89.23 85.33 51.85 

 decorrelated 76.92 64.00 40.74 

case 2 undecorrelated 46.15 18.66 50.62 

 decorrelated 40.00 18.60 38.21 

5. Conclusions 

Tracking filters for radar systems with correlated measurement noise are developed in 

this work. Two practical tasks are solved: 1) tracking with only position 

measurements and 2) tracking with position and velocity measurements. The noise 

decorrelation approach and state space partition are applied for tracking maneuvering 

objects with two-dimensional measurement vector. A new algorithm based on 

removing the state variables from measurements is proposed to identify the 

parameters of the colored noise. This decorrelation scheme is included into the cost-

effective IMM filter. Simulation results demonstrate fairly better tracking accuracy 

compared to the undecorrelated measurement errors and almost the same estimation 

capabilities as in the case of exactly decorrelated measurement errors. The filter 

structure is simple, practically feasible and suitable for on-line processing. In the 

measurement equation, only colored noise which is modeled as a first-order AR 

process is assumed. In real applications white noise also exists in the measurement 

errors and produces an Autoregressive Moving Average (ARMA) noise process. In 

this case, the described decorrelation algorithm becomes suboptimal. 
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